wan_runner.py 19.5 KB
Newer Older
1
import gc
PengGao's avatar
PengGao committed
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
5
import numpy as np
import torch
6
import torch.distributed as dist
PengGao's avatar
PengGao committed
7
import torchvision.transforms.functional as TF
helloyongyang's avatar
helloyongyang committed
8
from PIL import Image
PengGao's avatar
PengGao committed
9
10
11
12
13
from loguru import logger

from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
helloyongyang's avatar
helloyongyang committed
14
from lightx2v.models.networks.wan.model import WanModel
helloyongyang's avatar
helloyongyang committed
15
from lightx2v.models.runners.default_runner import DefaultRunner
gushiqiao's avatar
gushiqiao committed
16
from lightx2v.models.schedulers.wan.changing_resolution.scheduler import (
17
    WanScheduler4ChangingResolutionInterface,
gushiqiao's avatar
gushiqiao committed
18
)
19
from lightx2v.models.schedulers.wan.feature_caching.scheduler import (
20
    WanSchedulerCaching,
21
    WanSchedulerTaylorCaching,
22
)
PengGao's avatar
PengGao committed
23
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
helloyongyang's avatar
helloyongyang committed
24
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
25
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
26
from lightx2v.models.video_encoders.hf.wan.vae_tiny import WanVAE_tiny
27
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
28
29
30
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.utils import *
from lightx2v.utils.utils import best_output_size, cache_video
helloyongyang's avatar
helloyongyang committed
31
32
33
34
35
36
37


@RUNNER_REGISTER("wan2.1")
class WanRunner(DefaultRunner):
    def __init__(self, config):
        super().__init__(config)

38
39
40
41
42
43
    def load_transformer(self):
        model = WanModel(
            self.config.model_path,
            self.config,
            self.init_device,
        )
44
        if self.config.get("lora_configs") and self.config.lora_configs:
45
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
46
            lora_wrapper = WanLoraWrapper(model)
47
48
49
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
GoatWu's avatar
GoatWu committed
50
                lora_name = lora_wrapper.load_lora(lora_path)
51
52
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
53
54
        return model

55
    def load_image_encoder(self):
helloyongyang's avatar
helloyongyang committed
56
        image_encoder = None
helloyongyang's avatar
helloyongyang committed
57
        if self.config.task == "i2v" and self.config.get("use_image_encoder", True):
gushiqiao's avatar
gushiqiao committed
58
59
60
61
62
            # quant_config
            clip_quantized = self.config.get("clip_quantized", False)
            if clip_quantized:
                clip_quant_scheme = self.config.get("clip_quant_scheme", None)
                assert clip_quant_scheme is not None
gushiqiao's avatar
gushiqiao committed
63
                tmp_clip_quant_scheme = clip_quant_scheme.split("-")[0]
64
                clip_model_name = f"clip-{tmp_clip_quant_scheme}.pth"
65
                clip_quantized_ckpt = find_torch_model_path(self.config, "clip_quantized_ckpt", clip_model_name)
66
                clip_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
67
68
69
            else:
                clip_quantized_ckpt = None
                clip_quant_scheme = None
70
                clip_model_name = "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"
71
                clip_original_ckpt = find_torch_model_path(self.config, "clip_original_ckpt", clip_model_name)
gushiqiao's avatar
gushiqiao committed
72

73
74
            image_encoder = CLIPModel(
                dtype=torch.float16,
75
                device=self.init_device,
76
                checkpoint_path=clip_original_ckpt,
gushiqiao's avatar
gushiqiao committed
77
78
79
                clip_quantized=clip_quantized,
                clip_quantized_ckpt=clip_quantized_ckpt,
                quant_scheme=clip_quant_scheme,
gushiqiao's avatar
gushiqiao committed
80
81
                cpu_offload=self.config.get("clip_cpu_offload", self.config.get("cpu_offload", False)),
                use_31_block=self.config.get("use_31_block", True),
82
            )
83

84
        return image_encoder
helloyongyang's avatar
helloyongyang committed
85

86
    def load_text_encoder(self):
gushiqiao's avatar
gushiqiao committed
87
        # offload config
88
        t5_offload = self.config.get("t5_cpu_offload", self.config.get("cpu_offload"))
gushiqiao's avatar
gushiqiao committed
89
90
91
92
        if t5_offload:
            t5_device = torch.device("cpu")
        else:
            t5_device = torch.device("cuda")
gushiqiao's avatar
gushiqiao committed
93
94
95
96
97
98

        # quant_config
        t5_quantized = self.config.get("t5_quantized", False)
        if t5_quantized:
            t5_quant_scheme = self.config.get("t5_quant_scheme", None)
            assert t5_quant_scheme is not None
99
100
            tmp_t5_quant_scheme = t5_quant_scheme.split("-")[0]
            t5_model_name = f"models_t5_umt5-xxl-enc-{tmp_t5_quant_scheme}.pth"
101
            t5_quantized_ckpt = find_torch_model_path(self.config, "t5_quantized_ckpt", t5_model_name)
102
            t5_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
103
            tokenizer_path = os.path.join(os.path.dirname(t5_quantized_ckpt), "google/umt5-xxl")
gushiqiao's avatar
gushiqiao committed
104
105
106
        else:
            t5_quant_scheme = None
            t5_quantized_ckpt = None
107
            t5_model_name = "models_t5_umt5-xxl-enc-bf16.pth"
108
            t5_original_ckpt = find_torch_model_path(self.config, "t5_original_ckpt", t5_model_name)
gushiqiao's avatar
gushiqiao committed
109
            tokenizer_path = os.path.join(os.path.dirname(t5_original_ckpt), "google/umt5-xxl")
gushiqiao's avatar
Fix  
gushiqiao committed
110

helloyongyang's avatar
helloyongyang committed
111
112
113
        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
gushiqiao's avatar
gushiqiao committed
114
            device=t5_device,
115
            checkpoint_path=t5_original_ckpt,
gushiqiao's avatar
gushiqiao committed
116
            tokenizer_path=tokenizer_path,
helloyongyang's avatar
helloyongyang committed
117
            shard_fn=None,
gushiqiao's avatar
gushiqiao committed
118
            cpu_offload=t5_offload,
119
            offload_granularity=self.config.get("t5_offload_granularity", "model"),  # support ['model', 'block']
gushiqiao's avatar
gushiqiao committed
120
121
122
            t5_quantized=t5_quantized,
            t5_quantized_ckpt=t5_quantized_ckpt,
            quant_scheme=t5_quant_scheme,
helloyongyang's avatar
helloyongyang committed
123
124
        )
        text_encoders = [text_encoder]
125
        return text_encoders
helloyongyang's avatar
helloyongyang committed
126

127
    def load_vae_encoder(self):
128
129
130
131
132
133
134
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

135
        vae_config = {
gushiqiao's avatar
gushiqiao committed
136
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.1_VAE.pth"),
137
            "device": vae_device,
138
            "parallel": self.config.parallel and self.config.parallel.get("vae_p_size", False) and self.config.parallel.vae_p_size > 1,
139
            "use_tiling": self.config.get("use_tiling_vae", False),
140
            "cpu_offload": vae_offload,
141
        }
142
143
144
145
146
147
        if self.config.task != "i2v":
            return None
        else:
            return WanVAE(**vae_config)

    def load_vae_decoder(self):
148
149
150
151
152
153
154
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

155
        vae_config = {
gushiqiao's avatar
gushiqiao committed
156
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.1_VAE.pth"),
157
            "device": vae_device,
158
            "parallel": self.config.parallel and self.config.parallel.get("vae_p_size", False) and self.config.parallel.vae_p_size > 1,
159
            "use_tiling": self.config.get("use_tiling_vae", False),
160
            "cpu_offload": vae_offload,
161
        }
helloyongyang's avatar
helloyongyang committed
162
        if self.config.get("use_tiny_vae", False):
gushiqiao's avatar
gushiqiao committed
163
            tiny_vae_path = find_torch_model_path(self.config, "tiny_vae_path", "taew2_1.pth")
164
            vae_decoder = WanVAE_tiny(
gushiqiao's avatar
gushiqiao committed
165
                vae_pth=tiny_vae_path,
166
                device=self.init_device,
167
            ).to("cuda")
168
        else:
169
            vae_decoder = WanVAE(**vae_config)
170
        return vae_decoder
helloyongyang's avatar
helloyongyang committed
171

172
    def load_vae(self):
gushiqiao's avatar
gushiqiao committed
173
        vae_encoder = self.load_vae_encoder()
helloyongyang's avatar
helloyongyang committed
174
        if vae_encoder is None or self.config.get("use_tiny_vae", False):
gushiqiao's avatar
gushiqiao committed
175
176
177
178
            vae_decoder = self.load_vae_decoder()
        else:
            vae_decoder = vae_encoder
        return vae_encoder, vae_decoder
helloyongyang's avatar
helloyongyang committed
179
180

    def init_scheduler(self):
181
182
183
184
185
186
187
188
189
        if self.config.feature_caching == "NoCaching":
            scheduler_class = WanScheduler
        elif self.config.feature_caching == "TaylorSeer":
            scheduler_class = WanSchedulerTaylorCaching
        elif self.config.feature_caching in ["Tea", "Ada", "Custom", "FirstBlock", "DualBlock", "DynamicBlock"]:
            scheduler_class = WanSchedulerCaching
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config.feature_caching}")

190
        if self.config.get("changing_resolution", False):
191
            scheduler = WanScheduler4ChangingResolutionInterface(scheduler_class, self.config)
helloyongyang's avatar
helloyongyang committed
192
        else:
193
            scheduler = scheduler_class(self.config)
helloyongyang's avatar
helloyongyang committed
194
195
        self.model.set_scheduler(scheduler)

196
    def run_text_encoder(self, text, img):
gushiqiao's avatar
gushiqiao committed
197
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
198
            self.text_encoders = self.load_text_encoder()
199
        n_prompt = self.config.get("negative_prompt", "")
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        if self.config["cfg_parallel"]:
            cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
            cfg_p_rank = dist.get_rank(cfg_p_group)
            if cfg_p_rank == 0:
                context = self.text_encoders[0].infer([text])
                text_encoder_output = {"context": context}
            else:
                context_null = self.text_encoders[0].infer([n_prompt])
                text_encoder_output = {"context_null": context_null}
        else:
            context = self.text_encoders[0].infer([text])
            context_null = self.text_encoders[0].infer([n_prompt])
            text_encoder_output = {
                "context": context,
                "context_null": context_null,
            }

gushiqiao's avatar
gushiqiao committed
218
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
219
220
221
            del self.text_encoders[0]
            torch.cuda.empty_cache()
            gc.collect()
222

helloyongyang's avatar
helloyongyang committed
223
224
        return text_encoder_output

225
    def run_image_encoder(self, img):
gushiqiao's avatar
gushiqiao committed
226
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
227
            self.image_encoder = self.load_image_encoder()
228
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
gushiqiao's avatar
gushiqiao committed
229
        clip_encoder_out = self.image_encoder.visual([img[None, :, :, :]]).squeeze(0).to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
230
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
231
232
233
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
234
235
236
        return clip_encoder_out

    def run_vae_encoder(self, img):
helloyongyang's avatar
helloyongyang committed
237
238
239
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
        h, w = img.shape[1:]
        aspect_ratio = h / w
240
241
242
        max_area = self.config.target_height * self.config.target_width
        lat_h = round(np.sqrt(max_area * aspect_ratio) // self.config.vae_stride[1] // self.config.patch_size[1] * self.config.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // self.config.vae_stride[2] // self.config.patch_size[2] * self.config.patch_size[2])
243
244
245

        if self.config.get("changing_resolution", False):
            self.config.lat_h, self.config.lat_w = lat_h, lat_w
246
247
            vae_encode_out_list = []
            for i in range(len(self.config["resolution_rate"])):
248
249
250
251
                lat_h, lat_w = (
                    int(self.config.lat_h * self.config.resolution_rate[i]) // 2 * 2,
                    int(self.config.lat_w * self.config.resolution_rate[i]) // 2 * 2,
                )
252
253
254
                vae_encode_out_list.append(self.get_vae_encoder_output(img, lat_h, lat_w))
            vae_encode_out_list.append(self.get_vae_encoder_output(img, self.config.lat_h, self.config.lat_w))
            return vae_encode_out_list
255
256
        else:
            self.config.lat_h, self.config.lat_w = lat_h, lat_w
257
258
            vae_encoder_out = self.get_vae_encoder_output(img, lat_h, lat_w)
            return vae_encoder_out
259
260

    def get_vae_encoder_output(self, img, lat_h, lat_w):
261
262
        h = lat_h * self.config.vae_stride[1]
        w = lat_w * self.config.vae_stride[2]
helloyongyang's avatar
helloyongyang committed
263

264
265
266
267
268
269
270
        msk = torch.ones(
            1,
            self.config.target_video_length,
            lat_h,
            lat_w,
            device=torch.device("cuda"),
        )
helloyongyang's avatar
helloyongyang committed
271
272
273
274
        msk[:, 1:] = 0
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
gushiqiao's avatar
gushiqiao committed
275
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
276
            self.vae_encoder = self.load_vae_encoder()
277
        vae_encoder_out = self.vae_encoder.encode(
278
279
280
281
            [
                torch.concat(
                    [
                        torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
282
                        torch.zeros(3, self.config.target_video_length - 1, h, w),
283
284
285
286
                    ],
                    dim=1,
                ).cuda()
            ],
287
            self.config,
helloyongyang's avatar
helloyongyang committed
288
        )[0]
gushiqiao's avatar
gushiqiao committed
289
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
290
291
292
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
293
        vae_encoder_out = torch.concat([msk, vae_encoder_out]).to(GET_DTYPE())
294
        return vae_encoder_out
295

296
    def get_encoder_output_i2v(self, clip_encoder_out, vae_encoder_out, text_encoder_output, img):
297
298
        image_encoder_output = {
            "clip_encoder_out": clip_encoder_out,
299
            "vae_encoder_out": vae_encoder_out,
300
        }
301
302
303
304
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": image_encoder_output,
        }
helloyongyang's avatar
helloyongyang committed
305
306

    def set_target_shape(self):
307
        num_channels_latents = self.config.get("num_channels_latents", 16)
helloyongyang's avatar
helloyongyang committed
308
        if self.config.task == "i2v":
309
310
            self.config.target_shape = (
                num_channels_latents,
311
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
312
313
314
                self.config.lat_h,
                self.config.lat_w,
            )
helloyongyang's avatar
helloyongyang committed
315
316
        elif self.config.task == "t2v":
            self.config.target_shape = (
317
                num_channels_latents,
318
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
helloyongyang's avatar
helloyongyang committed
319
320
321
                int(self.config.target_height) // self.config.vae_stride[1],
                int(self.config.target_width) // self.config.vae_stride[2],
            )
322
323

    def save_video_func(self, images):
324
325
326
327
328
329
330
331
        cache_video(
            tensor=images,
            save_file=self.config.save_video_path,
            fps=self.config.get("fps", 16),
            nrow=1,
            normalize=True,
            value_range=(-1, 1),
        )
helloyongyang's avatar
helloyongyang committed
332
333
334
335
336
337
338
339
340
341
342
343


class MultiModelStruct:
    def __init__(self, model_list, config, boundary=0.875, num_train_timesteps=1000):
        self.model = model_list  # [high_noise_model, low_noise_model]
        assert len(self.model) == 2, "MultiModelStruct only supports 2 models now."
        self.config = config
        self.boundary = boundary
        self.boundary_timestep = self.boundary * num_train_timesteps
        self.cur_model_index = -1
        logger.info(f"boundary: {self.boundary}, boundary_timestep: {self.boundary_timestep}")

wangshankun's avatar
wangshankun committed
344
345
346
347
    @property
    def device(self):
        return self.model[self.cur_model_index].device

helloyongyang's avatar
helloyongyang committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    def set_scheduler(self, shared_scheduler):
        self.scheduler = shared_scheduler
        for model in self.model:
            model.set_scheduler(shared_scheduler)

    def infer(self, inputs):
        self.get_current_model_index()
        self.model[self.cur_model_index].infer(inputs)

    def get_current_model_index(self):
        if self.scheduler.timesteps[self.scheduler.step_index] >= self.boundary_timestep:
            logger.info(f"using - HIGH - noise model at step_index {self.scheduler.step_index + 1}")
            self.scheduler.sample_guide_scale = self.config.sample_guide_scale[0]
            if self.cur_model_index == -1:
                self.to_cuda(model_index=0)
            elif self.cur_model_index == 1:  # 1 -> 0
                self.offload_cpu(model_index=1)
                self.to_cuda(model_index=0)
            self.cur_model_index = 0
        else:
            logger.info(f"using - LOW - noise model at step_index {self.scheduler.step_index + 1}")
            self.scheduler.sample_guide_scale = self.config.sample_guide_scale[1]
            if self.cur_model_index == -1:
                self.to_cuda(model_index=1)
            elif self.cur_model_index == 0:  # 0 -> 1
                self.offload_cpu(model_index=0)
                self.to_cuda(model_index=1)
            self.cur_model_index = 1

    def offload_cpu(self, model_index):
        self.model[model_index].to_cpu()

    def to_cuda(self, model_index):
        self.model[model_index].to_cuda()


@RUNNER_REGISTER("wan2.2_moe")
class Wan22MoeRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_transformer(self):
        # encoder -> high_noise_model -> low_noise_model -> vae -> video_output
helloyongyang's avatar
helloyongyang committed
391
        high_noise_model = WanModel(
helloyongyang's avatar
helloyongyang committed
392
393
394
395
            os.path.join(self.config.model_path, "high_noise_model"),
            self.config,
            self.init_device,
        )
helloyongyang's avatar
helloyongyang committed
396
        low_noise_model = WanModel(
helloyongyang's avatar
helloyongyang committed
397
398
399
400
401
            os.path.join(self.config.model_path, "low_noise_model"),
            self.config,
            self.init_device,
        )
        return MultiModelStruct([high_noise_model, low_noise_model], self.config, self.config.boundary)
402
403
404
405
406
407
408
409


@RUNNER_REGISTER("wan2.2")
class Wan22DenseRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
410
411
412
413
414
415
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
416
417
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
418
419
420
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
421
422
423
424
425
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
426
427
428
429
430
431
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
432
433
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
434
435
436
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder

    def run_vae_encoder(self, img):
        max_area = self.config.target_height * self.config.target_width
        ih, iw = img.height, img.width
        dh, dw = self.config.patch_size[1] * self.config.vae_stride[1], self.config.patch_size[2] * self.config.vae_stride[2]
        ow, oh = best_output_size(iw, ih, dw, dh, max_area)

        scale = max(ow / iw, oh / ih)
        img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)

        # center-crop
        x1 = (img.width - ow) // 2
        y1 = (img.height - oh) // 2
        img = img.crop((x1, y1, x1 + ow, y1 + oh))
        assert img.width == ow and img.height == oh

        # to tensor
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda().unsqueeze(1)
        vae_encoder_out = self.get_vae_encoder_output(img)
        self.config.lat_w, self.config.lat_h = ow // self.config.vae_stride[2], oh // self.config.vae_stride[1]

        return vae_encoder_out

    def get_vae_encoder_output(self, img):
471
        z = self.vae_encoder.encode(img, self.config)
472
        return z