converter.py 36.9 KB
Newer Older
PengGao's avatar
PengGao committed
1
import argparse
2
3
4
import gc
import glob
import json
gushiqiao's avatar
gushiqiao committed
5
import multiprocessing
PengGao's avatar
PengGao committed
6
7
import os
import re
gushiqiao's avatar
gushiqiao committed
8
import shutil
PengGao's avatar
PengGao committed
9
from collections import defaultdict
gushiqiao's avatar
gushiqiao committed
10
from concurrent.futures import ThreadPoolExecutor, as_completed
PengGao's avatar
PengGao committed
11

12
13
import torch
from loguru import logger
14
15
16
17
18

try:
    from lora_loader import LoRALoader
except ImportError:
    pass
PengGao's avatar
PengGao committed
19
20
21
from safetensors import safe_open
from safetensors import torch as st
from tqdm import tqdm
22

23
24
25
26
27
28
try:
    from lightx2v.utils.registry_factory import CONVERT_WEIGHT_REGISTER
except ImportError:
    pass
from tools.convert.quant import *

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


gushiqiao's avatar
gushiqiao committed
308
def quantize_tensor(w, w_bit=8, dtype=torch.int8, comfyui_mode=False):
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    """
    Quantize a 2D tensor to specified bit width using symmetric min-max quantization

    Args:
        w: Input tensor to quantize (must be 2D)
        w_bit: Quantization bit width (default: 8)

    Returns:
        quantized: Quantized tensor (int8)
        scales: Scaling factors per row
    """
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")
    if w_bit != 8:
        raise ValueError("Only support 8 bits")

    org_w_shape = w.shape
    # Calculate quantization parameters
gushiqiao's avatar
gushiqiao committed
329
330
331
332
    if not comfyui_mode:
        max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)
    else:
        max_val = w.abs().max()
333
334

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
335
336
        finfo = torch.finfo(dtype)
        qmin, qmax = finfo.min, finfo.max
337
338
339
340
341
342
    elif dtype == torch.int8:
        qmin, qmax = -128, 127
    # Quantize tensor
    scales = max_val / qmax

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
343
344
        from qtorch.quant import float_quantize

gushiqiao's avatar
gushiqiao committed
345
346
347
        scaled_tensor = w / scales
        scaled_tensor = torch.clip(scaled_tensor, qmin, qmax)
        w_q = float_quantize(scaled_tensor.float(), 4, 3, rounding="nearest").to(dtype)
348
349
350
351
352
353
    else:
        w_q = torch.clamp(torch.round(w / scales), qmin, qmax).to(dtype)

    assert torch.isnan(scales).sum() == 0
    assert torch.isnan(w_q).sum() == 0

gushiqiao's avatar
gushiqiao committed
354
355
356
    if not comfyui_mode:
        scales = scales.view(org_w_shape[0], -1)
        w_q = w_q.reshape(org_w_shape)
357
358
359
360
361

    return w_q, scales


def quantize_model(
362
363
364
365
366
367
368
369
370
371
372
    weights,
    w_bit=8,
    target_keys=["attn", "ffn"],
    adapter_keys=None,
    key_idx=2,
    ignore_key=None,
    linear_dtype=torch.int8,
    non_linear_dtype=torch.float,
    comfyui_mode=False,
    comfyui_keys=[],
    linear_quant_type=None,
373
374
375
376
377
378
379
380
381
382
383
384
385
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
gushiqiao's avatar
gushiqiao committed
386
387
388
    original_size = 0
    quantized_size = 0
    non_quantized_size = 0
389
390
391
392
393
394
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

395
            if ignore_key is not None and any(ig_key in key for ig_key in ignore_key):
396
397
398
399
400
                del weights[key]
                continue

            tensor = weights[key]

401
            # Skip non-tensors and non-2D tensors
gushiqiao's avatar
gushiqiao committed
402
            if not isinstance(tensor, torch.Tensor) or tensor.dim() != 2:
gushiqiao's avatar
gushiqiao committed
403
404
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
405
406
407
                    non_quantized_size += weights[key].numel() * weights[key].element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
408
409
410
411
                continue

            # Check if key matches target modules
            parts = key.split(".")
412

gushiqiao's avatar
gushiqiao committed
413
            if comfyui_mode and (comfyui_keys is not None and key in comfyui_keys):
gushiqiao's avatar
gushiqiao committed
414
415
416
                pass
            elif len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
                if adapter_keys is None:
417
418
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
419
420
421
422
423
424
425
426
427
428
429
430
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                elif not any(adapter_key in parts for adapter_key in adapter_keys):
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
                continue
431

gushiqiao's avatar
gushiqiao committed
432
433
434
435
436
            # try:
            original_tensor_size = tensor.numel() * tensor.element_size()
            original_size += original_tensor_size

            # Quantize tensor and store results
437
438
439
440
441
442
443
            if linear_quant_type:
                quantizer = CONVERT_WEIGHT_REGISTER[linear_quant_type](tensor)
                w_q, scales, extra = quantizer.weight_quant_func(tensor)
                weight_global_scale = extra.get("weight_global_scale", None)  # For nvfp4
            else:
                w_q, scales = quantize_tensor(tensor, w_bit, linear_dtype, comfyui_mode)
                weight_global_scale = None
444

gushiqiao's avatar
gushiqiao committed
445
446
447
448
449
            # Replace original tensor and store scales
            weights[key] = w_q
            if comfyui_mode:
                weights[key.replace(".weight", ".scale_weight")] = scales
            else:
450
                weights[key + "_scale"] = scales
451
452
            if weight_global_scale:
                weights[key + "_global_scale"] = weight_global_scale
453

gushiqiao's avatar
gushiqiao committed
454
455
456
            quantized_tensor_size = w_q.numel() * w_q.element_size()
            scale_size = scales.numel() * scales.element_size()
            quantized_size += quantized_tensor_size + scale_size
457

gushiqiao's avatar
gushiqiao committed
458
459
460
461
462
            total_quantized += 1
            del w_q, scales

            # except Exception as e:
            #     logger.error(f"Error quantizing {key}: {str(e)}")
463
464
465

            gc.collect()

gushiqiao's avatar
gushiqiao committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    original_size_mb = original_size / (1024**2)
    quantized_size_mb = quantized_size / (1024**2)
    non_quantized_size_mb = non_quantized_size / (1024**2)
    total_final_size_mb = (quantized_size + non_quantized_size) / (1024**2)
    size_reduction_mb = original_size_mb - quantized_size_mb

    logger.info(f"Quantized {total_quantized} tensors")
    logger.info(f"Original quantized tensors size: {original_size_mb:.2f} MB")
    logger.info(f"After quantization size: {quantized_size_mb:.2f} MB (includes scales)")
    logger.info(f"Non-quantized tensors size: {non_quantized_size_mb:.2f} MB")
    logger.info(f"Total final model size: {total_final_size_mb:.2f} MB")
    logger.info(f"Size reduction in quantized tensors: {size_reduction_mb:.2f} MB ({size_reduction_mb / original_size_mb * 100:.1f}%)")

    if comfyui_mode:
        weights["scaled_fp8"] = torch.zeros(2, dtype=torch.float8_e4m3fn)

482
483
484
    return weights


gushiqiao's avatar
gushiqiao committed
485
486
487
def load_loras(lora_path, weight_dict, alpha, key_mapping_rules=None, strength=1.0):
    """
    Load and apply LoRA weights to model weights using the LoRALoader class.
gushiqiao's avatar
gushiqiao committed
488

gushiqiao's avatar
gushiqiao committed
489
490
491
492
493
494
495
496
    Args:
        lora_path: Path to LoRA safetensors file
        weight_dict: Model weights dictionary (will be modified in place)
        alpha: Global alpha scaling factor
        key_mapping_rules: Optional list of (pattern, replacement) regex rules for key mapping
        strength: Additional strength factor for LoRA deltas
    """
    logger.info(f"Loading LoRA from: {lora_path} with alpha={alpha}, strength={strength}")
gushiqiao's avatar
gushiqiao committed
497

gushiqiao's avatar
gushiqiao committed
498
499
500
    # Load LoRA weights from safetensors file
    with safe_open(lora_path, framework="pt") as f:
        lora_weights = {k: f.get_tensor(k) for k in f.keys()}
gushiqiao's avatar
gushiqiao committed
501

gushiqiao's avatar
gushiqiao committed
502
503
    # Create LoRA loader with key mapping rules
    lora_loader = LoRALoader(key_mapping_rules=key_mapping_rules)
gushiqiao's avatar
gushiqiao committed
504

gushiqiao's avatar
gushiqiao committed
505
506
507
508
509
510
511
    # Apply LoRA weights to model
    lora_loader.apply_lora(
        weight_dict=weight_dict,
        lora_weights=lora_weights,
        alpha=alpha,
        strength=strength,
    )
GoatWu's avatar
GoatWu committed
512
513


514
515
516
517
518
519
520
521
522
523
def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")
gushiqiao's avatar
gushiqiao committed
524
525

    # Optimize loading for better memory usage
526
527
528
529
530
531
532
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
gushiqiao's avatar
gushiqiao committed
533
            # Use lazy loading for safetensors to reduce memory usage
534
            with safe_open(file_path, framework="pt") as f:
gushiqiao's avatar
gushiqiao committed
535
536
537
538
539
540
541
542
543
544
                # Only load tensors when needed (lazy loading)
                weights = {}
                keys = f.keys()

                # For large files, show progress
                if len(keys) > 100:
                    for k in tqdm(keys, desc=f"Loading {os.path.basename(file_path)}", leave=False):
                        weights[k] = f.get_tensor(k)
                else:
                    weights = {k: f.get_tensor(k) for k in keys}
545
546
547
548
549

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")

gushiqiao's avatar
gushiqiao committed
550
551
        # Update weights more efficiently
        merged_weights.update(weights)
GoatWu's avatar
GoatWu committed
552

gushiqiao's avatar
gushiqiao committed
553
554
555
556
        # Clear weights dict to free memory
        del weights
        if len(src_files) > 1:
            gc.collect()  # Force garbage collection between files
GoatWu's avatar
GoatWu committed
557

558
559
560
561
    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")
gushiqiao's avatar
gushiqiao committed
562
563
564
565
566
567

        # Pre-compile regex patterns for better performance
        compiled_rules = [(re.compile(pattern), replacement) for pattern, replacement in rules]

        def convert_key(key):
            """Convert a single key using compiled rules"""
568
            new_key = key
gushiqiao's avatar
gushiqiao committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
            for pattern, replacement in compiled_rules:
                new_key = pattern.sub(replacement, new_key)
            return new_key

        # Batch convert keys using list comprehension (faster than loop)
        keys_list = list(merged_weights.keys())

        # Use parallel processing for large models
        if len(keys_list) > 1000 and args.parallel:
            logger.info(f"Using parallel processing for {len(keys_list)} keys")
            # Use ThreadPoolExecutor for I/O bound regex operations
            num_workers = min(8, multiprocessing.cpu_count())

            with ThreadPoolExecutor(max_workers=num_workers) as executor:
                # Submit all conversion tasks
                future_to_key = {executor.submit(convert_key, key): key for key in keys_list}

                # Process results as they complete with progress bar
                for future in tqdm(as_completed(future_to_key), total=len(keys_list), desc="Converting keys (parallel)"):
                    original_key = future_to_key[future]
                    new_key = future.result()
                    converted_weights[new_key] = merged_weights[original_key]
        else:
            # For smaller models, use simple loop with less overhead
            for key in tqdm(keys_list, desc="Converting keys"):
                new_key = convert_key(key)
                converted_weights[new_key] = merged_weights[key]
596
597
598
    else:
        converted_weights = merged_weights

gushiqiao's avatar
gushiqiao committed
599
600
601
    # Apply LoRA AFTER key conversion to ensure proper key matching
    if args.lora_path is not None:
        # Handle alpha list - if single alpha, replicate for all LoRAs
gushiqiao's avatar
gushiqiao committed
602
603
604
605
606
607
608
609
610
611
612
613
        if args.lora_alpha is not None:
            if len(args.lora_alpha) == 1 and len(args.lora_path) > 1:
                args.lora_alpha = args.lora_alpha * len(args.lora_path)
            elif len(args.lora_alpha) != len(args.lora_path):
                raise ValueError(f"Number of lora_alpha ({len(args.lora_alpha)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        # Normalize strength list
        if args.lora_strength is not None:
            if len(args.lora_strength) == 1 and len(args.lora_path) > 1:
                args.lora_strength = args.lora_strength * len(args.lora_path)
            elif len(args.lora_strength) != len(args.lora_path):
                raise ValueError(f"Number of strength ({len(args.lora_strength)}) must match number of lora_path ({len(args.lora_path)}) or be 1")
gushiqiao's avatar
gushiqiao committed
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

        # Determine if we should apply key mapping rules to LoRA keys
        key_mapping_rules = None
        if args.lora_key_convert == "convert" and args.direction is not None:
            # Apply same conversion as model
            key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
            logger.info("Applying key conversion to LoRA weights")
        elif args.lora_key_convert == "same":
            # Don't convert LoRA keys
            logger.info("Using original LoRA keys without conversion")
        else:  # auto
            # Auto-detect: if model was converted, try with conversion first
            if args.direction is not None:
                key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
                logger.info("Auto mode: will try with key conversion first")

gushiqiao's avatar
gushiqiao committed
630
        for idx, path in enumerate(args.lora_path):
gushiqiao's avatar
gushiqiao committed
631
            # Pass key mapping rules to handle converted keys properly
gushiqiao's avatar
gushiqiao committed
632
633
634
            strength = args.lora_strength[idx] if args.lora_strength is not None else 1.0
            alpha = args.lora_alpha[idx] if args.lora_alpha is not None else None
            load_loras(path, converted_weights, alpha, key_mapping_rules, strength=strength)
gushiqiao's avatar
gushiqiao committed
635

636
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
        if args.full_quantized and args.comfyui_mode:
            logger.info("Quant all tensors...")
            for k in converted_weights.keys():
                converted_weights[k] = converted_weights[k].float().to(args.linear_dtype)
        else:
            converted_weights = quantize_model(
                converted_weights,
                w_bit=args.bits,
                target_keys=args.target_keys,
                adapter_keys=args.adapter_keys,
                key_idx=args.key_idx,
                ignore_key=args.ignore_key,
                linear_dtype=args.linear_dtype,
                non_linear_dtype=args.non_linear_dtype,
                comfyui_mode=args.comfyui_mode,
                comfyui_keys=args.comfyui_keys,
653
                linear_quant_type=args.linear_quant_type,
gushiqiao's avatar
gushiqiao committed
654
            )
655
656
657
658
659
660
661
662

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}
gushiqiao's avatar
gushiqiao committed
663
664
665
666
        if args.single_file:
            output_filename = f"{args.output_name}.safetensors"
            output_path = os.path.join(args.output, output_filename)
            logger.info(f"Saving model to single file: {output_path}")
667

gushiqiao's avatar
gushiqiao committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            # For memory efficiency with large models
            try:
                # If model is very large (over threshold), consider warning
                total_size = sum(tensor.numel() * tensor.element_size() for tensor in converted_weights.values())
                total_size_gb = total_size / (1024**3)

                if total_size_gb > 10:  # Warn if model is larger than 10GB
                    logger.warning(f"Model size is {total_size_gb:.2f}GB. This will require significant memory to save as a single file.")
                    logger.warning("Consider using --save_by_block or default chunked saving for better memory efficiency.")

                # Save the entire model as a single file
                st.save_file(converted_weights, output_path)
                logger.info(f"Model saved successfully to: {output_path} ({total_size_gb:.2f}GB)")

            except MemoryError:
                logger.error("Memory error while saving. The model is too large to save as a single file.")
                logger.error("Please use --save_by_block or remove --single_file to use chunked saving.")
                raise
            except Exception as e:
                logger.error(f"Error saving model: {e}")
                raise
        elif args.save_by_block:
690
691
692
693
694
695
696
697
698
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
699
700
                    if args.model_type == "wan_animate_dit" and "face_adapter" in key:
                        block_idx = str(int(block_idx) * 5)
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
726
                if args.chunk_size > 0 and (idx + 1) % args.chunk_size == 0:
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
747
748
749
750
751
        if not args.single_file:
            index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
            with open(index_path, "w", encoding="utf-8") as f:
                json.dump(index, f, indent=2)
            logger.info(f"Index file written to: {index_path}")
752

gushiqiao's avatar
gushiqiao committed
753
    if os.path.isdir(args.source) and args.copy_no_weight_files:
gushiqiao's avatar
gushiqiao committed
754
755
756
757
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
gushiqiao's avatar
Fix  
gushiqiao committed
758
    ignore_extensions = [".pth", ".pt", ".safetensors", ".index.json"]
gushiqiao's avatar
gushiqiao committed
759
760
761

    logger.info(f"Start copying non-weighted files and subdirectories...")

gushiqiao's avatar
Fix  
gushiqiao committed
762
    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
gushiqiao's avatar
gushiqiao committed
763
764
765
766
767
768
769
770
771
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
gushiqiao's avatar
Fix  
gushiqiao committed
772
                logger.debug(f"copy file: {source_item} -> {target_item}")
gushiqiao's avatar
gushiqiao committed
773
        except Exception as e:
gushiqiao's avatar
Fix  
gushiqiao committed
774
            logger.error(f"copy {source_item} : {str(e)}")
gushiqiao's avatar
gushiqiao committed
775
776
777

    logger.info(f"Non-weight files and subdirectories copied")

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
802
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip", "wan_animate_dit", "qwen_image_dit"],
803
804
805
806
807
808
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
gushiqiao's avatar
gushiqiao committed
809
810
    parser.add_argument("--comfyui_mode", action="store_true")
    parser.add_argument("--full_quantized", action="store_true")
811
812
813
814
815
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--device",
        type=str,
816
        default="cuda",
817
818
819
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
gushiqiao's avatar
gushiqiao committed
820
        "--linear_dtype",
821
822
        type=str,
        choices=["torch.int8", "torch.float8_e4m3fn"],
gushiqiao's avatar
gushiqiao committed
823
824
        help="Data type for linear",
    )
825
826
827
828
829
830
    parser.add_argument(
        "--linear_quant_type",
        type=str,
        choices=["INT8", "FP8", "NVFP4", "MXFP4", "MXFP6", "MXFP8"],
        help="Data type for linear",
    )
gushiqiao's avatar
gushiqiao committed
831
832
833
834
835
836
    parser.add_argument(
        "--non_linear_dtype",
        type=str,
        default="torch.float32",
        choices=["torch.bfloat16", "torch.float16"],
        help="Data type for non-linear",
837
    )
GoatWu's avatar
GoatWu committed
838
839
840
841
842
    parser.add_argument("--lora_path", type=str, nargs="*", help="Path(s) to LoRA file(s). Can specify multiple paths separated by spaces.")
    parser.add_argument(
        "--lora_alpha",
        type=float,
        nargs="*",
gushiqiao's avatar
gushiqiao committed
843
844
845
846
847
848
849
850
        default=None,
        help="Alpha for LoRA weight scaling, Default non scaling. ",
    )
    parser.add_argument(
        "--lora_strength",
        type=float,
        nargs="*",
        help="Additional strength factor(s) for LoRA deltas; default 1.0",
GoatWu's avatar
GoatWu committed
851
    )
gushiqiao's avatar
gushiqiao committed
852
    parser.add_argument("--copy_no_weight_files", action="store_true")
gushiqiao's avatar
gushiqiao committed
853
854
855
856
857
858
859
860
861
    parser.add_argument("--single_file", action="store_true", help="Save as a single safetensors file instead of chunking (warning: requires loading entire model in memory)")
    parser.add_argument(
        "--lora_key_convert",
        choices=["auto", "same", "convert"],
        default="auto",
        help="How to handle LoRA key conversion: 'auto' (detect from LoRA), 'same' (use original keys), 'convert' (apply same conversion as model)",
    )
    parser.add_argument("--parallel", action="store_true", default=True, help="Use parallel processing for faster conversion (default: True)")
    parser.add_argument("--no-parallel", dest="parallel", action="store_false", help="Disable parallel processing")
862
863
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
864
865
866
867
868
869
870
    # Validate conflicting arguments
    if args.single_file and args.save_by_block:
        parser.error("--single_file and --save_by_block cannot be used together. Choose one saving strategy.")

    if args.single_file and args.chunk_size > 0 and args.chunk_size != 100:
        logger.warning("--chunk_size is ignored when using --single_file option.")

gushiqiao's avatar
Fix  
gushiqiao committed
871
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
872
873
        args.linear_dtype = eval(args.linear_dtype)
        args.non_linear_dtype = eval(args.non_linear_dtype)
gushiqiao's avatar
Fix  
gushiqiao committed
874
875

        model_type_keys_map = {
876
877
            "qwen_image_dit": {
                "key_idx": 2,
gushiqiao's avatar
gushiqiao committed
878
                "target_keys": ["attn", "img_mlp", "txt_mlp", "txt_mod", "img_mod"],
879
                "ignore_key": None,
gushiqiao's avatar
gushiqiao committed
880
881
882
883
884
885
886
887
                "comfyui_keys": [
                    "time_text_embed.timestep_embedder.linear_1.weight",
                    "time_text_embed.timestep_embedder.linear_2.weight",
                    "img_in.weight",
                    "txt_in.weight",
                    "norm_out.linear.weight",
                    "proj_out.weight",
                ],
888
            },
gushiqiao's avatar
Fix  
gushiqiao committed
889
890
891
            "wan_dit": {
                "key_idx": 2,
                "target_keys": ["self_attn", "cross_attn", "ffn"],
892
                "ignore_key": ["ca", "audio"],
gushiqiao's avatar
Fix  
gushiqiao committed
893
            },
894
            "wan_animate_dit": {"key_idx": 2, "target_keys": ["self_attn", "cross_attn", "ffn"], "adapter_keys": ["linear1_kv", "linear1_q", "linear2"], "ignore_key": None},
gushiqiao's avatar
Fix  
gushiqiao committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
            "hunyuan_dit": {
                "key_idx": 2,
                "target_keys": [
                    "img_mod",
                    "img_attn_qkv",
                    "img_attn_proj",
                    "img_mlp",
                    "txt_mod",
                    "txt_attn_qkv",
                    "txt_attn_proj",
                    "txt_mlp",
                    "linear1",
                    "linear2",
                    "modulation",
                ],
                "ignore_key": None,
            },
            "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
            "wan_clip": {
                "key_idx": 3,
                "target_keys": ["attn", "mlp"],
                "ignore_key": "textual",
            },
        }

        args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
921
        args.adapter_keys = model_type_keys_map[args.model_type]["adapter_keys"] if "adapter_keys" in model_type_keys_map[args.model_type] else None
gushiqiao's avatar
Fix  
gushiqiao committed
922
923
        args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
        args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]
gushiqiao's avatar
gushiqiao committed
924
        args.comfyui_keys = model_type_keys_map[args.model_type]["comfyui_keys"] if "comfyui_keys" in model_type_keys_map[args.model_type] else None
925
926
927
928
929
930
931
932
933
934
935

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()