gradio_demo_zh.py 40.7 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
3
4
5
6
7
8
9
10
11
import os
import gradio as gr
import asyncio
import argparse
import json
import torch
import gc
from easydict import EasyDict
from datetime import datetime
from loguru import logger

gushiqiao's avatar
gushiqiao committed
12
13
import importlib.util
import psutil
gushiqiao's avatar
gushiqiao committed
14
import random
gushiqiao's avatar
gushiqiao committed
15
16
17
18
19
20
21
22
23
24

logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
25
26
27
28
29
30
MAX_NUMPY_SEED = 2**32 - 1


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
31

gushiqiao's avatar
gushiqiao committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    q8f_installed = is_module_installed("sageattention")
    if q8f_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

gushiqiao's avatar
gushiqiao committed
85
86
87
88
89
90
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
91
92
93
94
95
96
97
98
99
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
gushiqiao's avatar
gushiqiao committed
100
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
gushiqiao's avatar
gushiqiao committed
101
102
103
104
105
106
107
108
109
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
110
111
112
113
114
115
116
117


def generate_unique_filename(base_dir="./saved_videos"):
    os.makedirs(base_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(base_dir, f"{model_cls}_{timestamp}.mp4")


gushiqiao's avatar
gushiqiao committed
118
119
120
121
122
123
124
125
126
127
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


global_runner = None
current_config = None
gushiqiao's avatar
gushiqiao committed
128
129
130
131
132
cur_dit_quant_scheme = None
cur_clip_quant_scheme = None
cur_t5_quant_scheme = None
cur_precision_mode = None
cur_enable_teacache = None
gushiqiao's avatar
gushiqiao committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
attn_op_choices = []
for op_name, is_installed in available_attn_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
149
150
151
152
153
154
155
156
157
158
159
160
161
def run_inference(
    model_type,
    prompt,
    negative_prompt,
    save_video_path,
    torch_compile,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_teacache,
    teacache_thresh,
gushiqiao's avatar
gushiqiao committed
162
    use_ret_steps,
gushiqiao's avatar
gushiqiao committed
163
164
165
166
167
168
169
170
171
172
173
174
    enable_cfg,
    cfg_scale,
    dit_quant_scheme,
    t5_quant_scheme,
    clip_quant_scheme,
    fps,
    use_tiny_vae,
    use_tiling_vae,
    lazy_load,
    precision_mode,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
175
    offload_ratio,
gushiqiao's avatar
gushiqiao committed
176
177
178
179
    t5_offload_granularity,
    attention_type,
    quant_op,
    rotary_chunk,
gushiqiao's avatar
gushiqiao committed
180
    rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
181
    clean_cuda_cache,
gushiqiao's avatar
gushiqiao committed
182
    image_path=None,
gushiqiao's avatar
gushiqiao committed
183
):
gushiqiao's avatar
gushiqiao committed
184
185
186
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

gushiqiao's avatar
gushiqiao committed
187
    global global_runner, current_config, model_path, task
gushiqiao's avatar
gushiqiao committed
188
    global cur_dit_quant_scheme, cur_clip_quant_scheme, cur_t5_quant_scheme, cur_precision_mode, cur_enable_teacache
gushiqiao's avatar
gushiqiao committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)

    if task == "t2v":
        if model_type == "Wan2.1 1.3B":
            # 1.3B
            coefficient = [
                [
                    -5.21862437e04,
                    9.23041404e03,
                    -5.28275948e02,
                    1.36987616e01,
                    -4.99875664e-02,
                ],
                [
                    2.39676752e03,
                    -1.31110545e03,
                    2.01331979e02,
                    -8.29855975e00,
                    1.37887774e-01,
                ],
            ]
        else:
            # 14B
            coefficient = [
                [
                    -3.03318725e05,
                    4.90537029e04,
                    -2.65530556e03,
                    5.87365115e01,
                    -3.15583525e-01,
                ],
                [
                    -5784.54975374,
                    5449.50911966,
                    -1811.16591783,
                    256.27178429,
                    -13.02252404,
                ],
            ]
    elif task == "i2v":
        if resolution in [
            "1280x720",
            "720x1280",
            "1280x544",
            "544x1280",
            "1104x832",
            "832x1104",
            "960x960",
        ]:
            # 720p
            coefficient = [
                [
                    8.10705460e03,
                    2.13393892e03,
                    -3.72934672e02,
                    1.66203073e01,
                    -4.17769401e-02,
                ],
                [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
            ]
        else:
            # 480p
            coefficient = [
                [
                    2.57151496e05,
                    -3.54229917e04,
                    1.40286849e03,
                    -1.35890334e01,
                    1.32517977e-01,
                ],
                [
                    -3.02331670e02,
                    2.23948934e02,
                    -5.25463970e01,
                    5.87348440e00,
                    -2.01973289e-01,
                ],
            ]

    save_video_path = generate_unique_filename()

    is_dit_quant = dit_quant_scheme != "bf16"
    is_t5_quant = t5_quant_scheme != "bf16"
    if is_t5_quant:
gushiqiao's avatar
gushiqiao committed
276
277
        t5_path = os.path.join(model_path, t5_quant_scheme)
        t5_quant_ckpt = os.path.join(t5_path, f"models_t5_umt5-xxl-enc-{t5_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
278
279
280
    else:
        t5_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
281
    is_clip_quant = clip_quant_scheme != "fp16"
gushiqiao's avatar
gushiqiao committed
282
    if is_clip_quant:
gushiqiao's avatar
gushiqiao committed
283
284
        clip_path = os.path.join(model_path, clip_quant_scheme)
        clip_quant_ckpt = os.path.join(clip_path, f"clip-{clip_quant_scheme}.pth")
gushiqiao's avatar
gushiqiao committed
285
286
287
    else:
        clip_quant_ckpt = None

gushiqiao's avatar
gushiqiao committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    needs_reinit = (
        lazy_load
        or global_runner is None
        or current_config is None
        or cur_dit_quant_scheme is None
        or cur_dit_quant_scheme != dit_quant_scheme
        or cur_clip_quant_scheme is None
        or cur_clip_quant_scheme != clip_quant_scheme
        or cur_t5_quant_scheme is None
        or cur_t5_quant_scheme != t5_quant_scheme
        or cur_precision_mode is None
        or cur_precision_mode != precision_mode
        or cur_enable_teacache is None
        or cur_enable_teacache != enable_teacache
    )
gushiqiao's avatar
gushiqiao committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    if torch_compile:
        os.environ["ENABLE_GRAPH_MODE"] = "true"
    else:
        os.environ["ENABLE_GRAPH_MODE"] = "false"
    if precision_mode == "bf16":
        os.environ["DTYPE"] = "BF16"
    else:
        os.environ.pop("DTYPE", None)

    if is_dit_quant:
        if quant_op == "vllm":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Vllm"
        elif quant_op == "sgl":
gushiqiao's avatar
gushiqiao committed
317
318
319
320
            if dit_quant_scheme == "int8":
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl-ActVllm"
            else:
                mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Sgl"
gushiqiao's avatar
gushiqiao committed
321
322
        elif quant_op == "q8f":
            mm_type = f"W-{dit_quant_scheme}-channel-sym-A-{dit_quant_scheme}-channel-sym-dynamic-Q8F"
gushiqiao's avatar
gushiqiao committed
323
324

        dit_quantized_ckpt = os.path.join(model_path, dit_quant_scheme)
gushiqiao's avatar
gushiqiao committed
325
326
327
        if os.path.exists(os.path.join(dit_quantized_ckpt, "config.json")):
            with open(os.path.join(dit_quantized_ckpt, "config.json"), "r") as f:
                quant_model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
328
329
    else:
        mm_type = "Default"
gushiqiao's avatar
gushiqiao committed
330
        dit_quantized_ckpt = None
gushiqiao's avatar
gushiqiao committed
331
        quant_model_config = {}
gushiqiao's avatar
gushiqiao committed
332
333
334
335
336
337

    config = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
338
339
340
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
341
342
343
344
345
346
        "seed": seed,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "cpu_offload": cpu_offload,
        "offload_granularity": offload_granularity,
gushiqiao's avatar
gushiqiao committed
347
        "offload_ratio": offload_ratio,
gushiqiao's avatar
gushiqiao committed
348
        "t5_offload_granularity": t5_offload_granularity,
gushiqiao's avatar
gushiqiao committed
349
        "dit_quantized_ckpt": dit_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
350
351
352
353
354
        "mm_config": {
            "mm_type": mm_type,
        },
        "fps": fps,
        "feature_caching": "Tea" if enable_teacache else "NoCaching",
gushiqiao's avatar
gushiqiao committed
355
356
        "coefficients": coefficient[0] if use_ret_steps else coefficient[1],
        "use_ret_steps": use_ret_steps,
gushiqiao's avatar
gushiqiao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        "teacache_thresh": teacache_thresh,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quant_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quant_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "use_tiling_vae": use_tiling_vae,
        "tiny_vae": use_tiny_vae,
        "tiny_vae_path": (os.path.join(model_path, "taew2_1.pth") if use_tiny_vae else None),
        "lazy_load": lazy_load,
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "rotary_chunk": rotary_chunk,
gushiqiao's avatar
gushiqiao committed
379
        "rotary_chunk_size": rotary_chunk_size,
gushiqiao's avatar
gushiqiao committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        "clean_cuda_cache": clean_cuda_cache,
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_video_path=save_video_path,
    )

    config.update({k: v for k, v in vars(args).items()})
    config = EasyDict(config)
    config["mode"] = "infer"
    config.update(model_config)
gushiqiao's avatar
gushiqiao committed
398
    config.update(quant_model_config)
gushiqiao's avatar
gushiqiao committed
399
400
401
402

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
403
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
404
405
406
407
408
409
410
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
411
412
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
413
414
        runner = init_runner(config)
        current_config = config
gushiqiao's avatar
gushiqiao committed
415
416
417
418
419
        cur_dit_quant_scheme = dit_quant_scheme
        cur_clip_quant_scheme = clip_quant_scheme
        cur_t5_quant_scheme = t5_quant_scheme
        cur_precision_mode = precision_mode
        cur_enable_teacache = enable_teacache
gushiqiao's avatar
gushiqiao committed
420
421
422

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
423
424
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
425
426
427
428
429
430
431
432
433
434
435

    asyncio.run(runner.run_pipeline())

    if lazy_load:
        del runner
        torch.cuda.empty_cache()
        gc.collect()

    return save_video_path


gushiqiao's avatar
gushiqiao committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def auto_configure(enable_auto_config, model_type, resolution):
    default_config = {
        "torch_compile_val": False,
        "lazy_load_val": False,
        "rotary_chunk_val": False,
        "rotary_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "offload_ratio_val": 1,
        "t5_offload_granularity_val": "model",
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "dit_quant_scheme_val": "bf16",
        "t5_quant_scheme_val": "bf16",
        "clip_quant_scheme_val": "fp16",
        "precision_mode_val": "fp32",
        "use_tiny_vae_val": False,
        "use_tiling_vae_val": False,
        "enable_teacache_val": False,
        "teacache_thresh_val": 0.26,
        "use_ret_steps_val": False,
    }
gushiqiao's avatar
gushiqiao committed
459

gushiqiao's avatar
gushiqiao committed
460
461
462
463
464
465
466
467
468
469
470
    if not enable_auto_config:
        return tuple(gr.update(value=default_config[key]) for key in default_config)

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    if is_fp8_supported_gpu():
        quant_type = "fp8"
    else:
        quant_type = "int8"

gushiqiao's avatar
gushiqiao committed
471
    attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    quant_op_priority = ["sgl", "vllm", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if model_type in ["Wan2.1 14B"]:
        is_14b = True
    else:
        is_14b = False

    if res == "720p" and is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (32, {"cpu_offload_val": True, "offload_ratio_val": 1}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                },
            ),
            (
                12,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
gushiqiao's avatar
gushiqiao committed
548
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rotary_chunk_val": True,
                    "rotary_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "dit_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
567
                    "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
568
569
570
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
571

gushiqiao's avatar
gushiqiao committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    elif is_14b:
        gpu_rules = [
            (80, {}),
            (48, {"cpu_offload_val": True, "offload_ratio_val": 0.2}),
            (40, {"cpu_offload_val": True, "offload_ratio_val": 0.5}),
            (24, {"cpu_offload_val": True, "offload_ratio_val": 0.8}),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "offload_ratio_val": 1,
                    "t5_offload_granularity_val": "block",
                    "precision_mode_val": "bf16",
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "block",
                },
            ),
            (
                8,
                (
                    {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
                        "rotary_chunk_val": True,
                        "rotary_chunk_size_val": 10000,
gushiqiao's avatar
gushiqiao committed
605
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
606
607
608
609
610
611
612
613
614
615
616
617
618
                    }
                    if res == "540p"
                    else {
                        "cpu_offload_val": True,
                        "offload_ratio_val": 1,
                        "t5_offload_granularity_val": "block",
                        "precision_mode_val": "bf16",
                        "use_tiling_vae_val": True,
                        "offload_granularity_val": "phase",
                        "t5_quant_scheme_val": quant_type,
                        "clip_quant_scheme_val": quant_type,
                        "dit_quant_scheme_val": quant_type,
                        "lazy_load_val": True,
gushiqiao's avatar
gushiqiao committed
619
                        "use_tiny_vae_val": True,
gushiqiao's avatar
gushiqiao committed
620
621
622
623
624
                    }
                ),
            ),
        ]

gushiqiao's avatar
gushiqiao committed
625
626
627
    else:
        gpu_rules = {}

gushiqiao's avatar
gushiqiao committed
628
629
630
631
632
633
634
    if is_14b:
        cpu_rules = [
            (128, {}),
            (64, {"dit_quant_scheme_val": quant_type}),
            (32, {"dit_quant_scheme_val": quant_type, "lazy_load_val": True}),
            (
                16,
gushiqiao's avatar
gushiqiao committed
635
636
637
638
639
640
                {
                    "dit_quant_scheme_val": quant_type,
                    "t5_quant_scheme_val": quant_type,
                    "clip_quant_scheme_val": quant_type,
                    "lazy_load_val": True,
                },
gushiqiao's avatar
gushiqiao committed
641
642
            ),
        ]
gushiqiao's avatar
gushiqiao committed
643
644
    else:
        cpu_rules = {}
gushiqiao's avatar
gushiqiao committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return tuple(gr.update(value=default_config[key]) for key in default_config)


def main():
gushiqiao's avatar
gushiqiao committed
660
    def toggle_image_input(task):
gushiqiao's avatar
gushiqiao committed
661
        return gr.update(visible=(task == "i2v"))
gushiqiao's avatar
gushiqiao committed
662
663

    with gr.Blocks(
gushiqiao's avatar
gushiqiao committed
664
        title="Lightx2v (轻量级视频推理和生成引擎)",
gushiqiao's avatar
gushiqiao committed
665
666
667
668
669
670
671
672
673
674
675
676
        css="""
        .main-content { max-width: 1400px; margin: auto; }
        .output-video { max-height: 650px; }
        .warning { color: #ff6b6b; font-weight: bold; }
        .advanced-options { background: #f9f9ff; border-radius: 10px; padding: 15px; }
        .tab-button { font-size: 16px; padding: 10px 20px; }
    """,
    ) as demo:
        gr.Markdown(f"# 🎬 {model_cls} 视频生成器")
        gr.Markdown(f"### 使用模型: {model_path}")

        with gr.Tabs() as tabs:
gushiqiao's avatar
gushiqiao committed
677
            with gr.Tab("基本设置", id=1):
gushiqiao's avatar
gushiqiao committed
678
679
680
681
682
683
                with gr.Row():
                    with gr.Column(scale=4):
                        with gr.Group():
                            gr.Markdown("## 📥 输入参数")

                            with gr.Row():
gushiqiao's avatar
gushiqiao committed
684
685
686
687
688
689
690
691
692
693
694
695
                                if task == "i2v":
                                    model_type = gr.Dropdown(
                                        choices=["Wan2.1 14B"],
                                        value="Wan2.1 14B",
                                        label="模型类型",
                                    )
                                else:
                                    model_type = gr.Dropdown(
                                        choices=["Wan2.1 14B", "Wan2.1 1.3B"],
                                        value="Wan2.1 14B",
                                        label="模型类型",
                                    )
gushiqiao's avatar
gushiqiao committed
696

gushiqiao's avatar
gushiqiao committed
697
698
699
700
701
702
703
704
705
                            if task == "i2v":
                                with gr.Row():
                                    image_path = gr.Image(
                                        label="输入图像",
                                        type="filepath",
                                        height=300,
                                        interactive=True,
                                        visible=True,
                                    )
gushiqiao's avatar
gushiqiao committed
706
707
708
709
710
711
712
713
714
715
716
717
718

                            with gr.Row():
                                with gr.Column():
                                    prompt = gr.Textbox(
                                        label="提示词",
                                        lines=3,
                                        placeholder="描述视频内容...",
                                        max_lines=5,
                                    )
                                with gr.Column():
                                    negative_prompt = gr.Textbox(
                                        label="负向提示词",
                                        lines=3,
gushiqiao's avatar
gushiqiao committed
719
                                        placeholder="不希望出现在视频中的内容...",
gushiqiao's avatar
gushiqiao committed
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
                                        max_lines=5,
                                        value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                                    )
                                with gr.Column():
                                    resolution = gr.Dropdown(
                                        choices=[
                                            # 720p
                                            ("1280x720 (16:9, 720p)", "1280x720"),
                                            ("720x1280 (9:16, 720p)", "720x1280"),
                                            ("1280x544 (21:9, 720p)", "1280x544"),
                                            ("544x1280 (9:21, 720p)", "544x1280"),
                                            ("1104x832 (4:3, 720p)", "1104x832"),
                                            ("832x1104 (3:4, 720p)", "832x1104"),
                                            ("960x960 (1:1, 720p)", "960x960"),
                                            # 480p
                                            ("960x544 (16:9, 540p)", "960x544"),
                                            ("544x960 (9:16, 540p)", "544x960"),
                                            ("832x480 (16:9, 480p)", "832x480"),
                                            ("480x832 (9:16, 480p)", "480x832"),
                                            ("832x624 (4:3, 480p)", "832x624"),
                                            ("624x832 (3:4, 480p)", "624x832"),
                                            ("720x720 (1:1, 480p)", "720x720"),
                                            ("512x512 (1:1, 480p)", "512x512"),
                                        ],
                                        value="832x480",
                                        label="最大分辨率",
                                    )
gushiqiao's avatar
gushiqiao committed
747
748
749
750
751

                                with gr.Column():
                                    enable_auto_config = gr.Checkbox(
                                        label="自动配置推理选项", value=False, info="自动优化GPU设置以匹配当前分辨率。修改分辨率后,请重新勾选此选项,否则可能导致性能下降或运行失败。"
                                    )
gushiqiao's avatar
gushiqiao committed
752
                                with gr.Column(scale=9):
gushiqiao's avatar
gushiqiao committed
753
754
                                    seed = gr.Slider(
                                        label="随机种子",
gushiqiao's avatar
gushiqiao committed
755
756
                                        minimum=0,
                                        maximum=MAX_NUMPY_SEED,
gushiqiao's avatar
gushiqiao committed
757
                                        step=1,
gushiqiao's avatar
gushiqiao committed
758
                                        value=generate_random_seed(),
gushiqiao's avatar
gushiqiao committed
759
                                    )
gushiqiao's avatar
gushiqiao committed
760
                                with gr.Column(scale=1):
gushiqiao's avatar
gushiqiao committed
761
                                    randomize_btn = gr.Button("🎲 随机化", variant="secondary")
gushiqiao's avatar
gushiqiao committed
762
763

                                randomize_btn.click(fn=generate_random_seed, inputs=None, outputs=seed)
gushiqiao's avatar
gushiqiao committed
764

gushiqiao's avatar
gushiqiao committed
765
                                with gr.Column():
gushiqiao's avatar
gushiqiao committed
766
767
768
769
770
                                    infer_steps = gr.Slider(
                                        label="推理步数",
                                        minimum=1,
                                        maximum=100,
                                        step=1,
gushiqiao's avatar
gushiqiao committed
771
                                        value=40,
gushiqiao's avatar
gushiqiao committed
772
                                        info="视频生成的推理步数。增加步数可能提高质量但降低速度。",
gushiqiao's avatar
gushiqiao committed
773
774
                                    )

gushiqiao's avatar
gushiqiao committed
775
776
777
778
779
780
781
782
783
784
785
                            enable_cfg = gr.Checkbox(
                                label="启用无分类器引导",
                                value=True,
                                info="启用无分类器引导以控制提示词强度",
                            )
                            cfg_scale = gr.Slider(
                                label="CFG缩放因子",
                                minimum=1,
                                maximum=10,
                                step=1,
                                value=5,
gushiqiao's avatar
gushiqiao committed
786
                                info="控制提示词的影响强度。值越高,提示词的影响越大。",
gushiqiao's avatar
gushiqiao committed
787
788
789
790
791
792
793
                            )
                            sample_shift = gr.Slider(
                                label="分布偏移",
                                value=5,
                                minimum=0,
                                maximum=10,
                                step=1,
gushiqiao's avatar
gushiqiao committed
794
                                info="控制样本分布偏移的程度。值越大表示偏移越明显。",
gushiqiao's avatar
gushiqiao committed
795
796
                            )

gushiqiao's avatar
gushiqiao committed
797
798
799
800
801
802
                            fps = gr.Slider(
                                label="每秒帧数(FPS)",
                                minimum=8,
                                maximum=30,
                                step=1,
                                value=16,
gushiqiao's avatar
gushiqiao committed
803
                                info="视频的每秒帧数。较高的FPS会产生更流畅的视频。",
gushiqiao's avatar
gushiqiao committed
804
805
806
807
808
809
810
                            )
                            num_frames = gr.Slider(
                                label="总帧数",
                                minimum=16,
                                maximum=120,
                                step=1,
                                value=81,
gushiqiao's avatar
gushiqiao committed
811
                                info="视频中的总帧数。更多帧数会产生更长的视频。",
gushiqiao's avatar
gushiqiao committed
812
                            )
gushiqiao's avatar
gushiqiao committed
813

gushiqiao's avatar
gushiqiao committed
814
815
816
817
818
                        save_video_path = gr.Textbox(
                            label="输出视频路径",
                            value=generate_unique_filename(),
                            info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        )
gushiqiao's avatar
gushiqiao committed
819
820
821
822
823
824
825
826
827
828
                    with gr.Column(scale=6):
                        gr.Markdown("## 📤 生成的视频")
                        output_video = gr.Video(
                            label="结果",
                            height=624,
                            width=360,
                            autoplay=True,
                            elem_classes=["output-video"],
                        )

gushiqiao's avatar
gushiqiao committed
829
                        infer_btn = gr.Button("生成视频", variant="primary", size="lg")
gushiqiao's avatar
gushiqiao committed
830

gushiqiao's avatar
gushiqiao committed
831
832
            with gr.Tab("⚙️ 高级选项", id=2):
                with gr.Group(elem_classes="advanced-options"):
gushiqiao's avatar
gushiqiao committed
833
                    gr.Markdown("### GPU内存优化")
gushiqiao's avatar
gushiqiao committed
834
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
835
836
                        rotary_chunk = gr.Checkbox(
                            label="分块旋转位置编码",
gushiqiao's avatar
gushiqiao committed
837
                            value=False,
gushiqiao's avatar
gushiqiao committed
838
                            info="启用时,将旋转位置编码分块处理以节省GPU内存。",
gushiqiao's avatar
gushiqiao committed
839
840
                        )

gushiqiao's avatar
gushiqiao committed
841
842
843
844
845
846
                        rotary_chunk_size = gr.Slider(
                            label="旋转编码块大小",
                            value=100,
                            minimum=100,
                            maximum=10000,
                            step=100,
gushiqiao's avatar
gushiqiao committed
847
                            info="控制应用旋转编码的块大小。较大的值可能提高性能但增加内存使用。仅在'rotary_chunk'勾选时有效。",
gushiqiao's avatar
gushiqiao committed
848
849
850
                        )

                        clean_cuda_cache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
851
                            label="清理CUDA内存缓存",
gushiqiao's avatar
gushiqiao committed
852
                            value=False,
gushiqiao's avatar
gushiqiao committed
853
                            info="启用时,及时释放GPU内存但会减慢推理速度。",
gushiqiao's avatar
gushiqiao committed
854
855
                        )

gushiqiao's avatar
gushiqiao committed
856
                    gr.Markdown("### 异步卸载")
gushiqiao's avatar
gushiqiao committed
857
858
859
860
                    with gr.Row():
                        cpu_offload = gr.Checkbox(
                            label="CPU卸载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
861
                            info="将模型计算的一部分从GPU卸载到CPU以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
862
                        )
gushiqiao's avatar
gushiqiao committed
863
864
865
866

                        lazy_load = gr.Checkbox(
                            label="启用延迟加载",
                            value=False,
gushiqiao's avatar
gushiqiao committed
867
                            info="在推理过程中延迟加载模型组件。需要CPU加载和DIT量化。",
gushiqiao's avatar
gushiqiao committed
868
869
                        )

gushiqiao's avatar
gushiqiao committed
870
                        offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
871
                            label="Dit卸载粒度",
gushiqiao's avatar
gushiqiao committed
872
                            choices=["block", "phase"],
gushiqiao's avatar
gushiqiao committed
873
                            value="phase",
gushiqiao's avatar
gushiqiao committed
874
                            info="设置Dit模型卸载粒度:块或计算阶段",
gushiqiao's avatar
gushiqiao committed
875
876
877
878
879
880
881
882
                        )
                        offload_ratio = gr.Slider(
                            label="Dit模型卸载比例",
                            minimum=0.0,
                            maximum=1.0,
                            step=0.1,
                            value=1.0,
                            info="控制将多少Dit模型卸载到CPU",
gushiqiao's avatar
gushiqiao committed
883
884
                        )
                        t5_offload_granularity = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
885
                            label="T5编码器卸载粒度",
gushiqiao's avatar
gushiqiao committed
886
                            choices=["model", "block"],
gushiqiao's avatar
gushiqiao committed
887
888
                            value="model",
                            info="控制将T5编码器模型卸载到CPU时的粒度",
gushiqiao's avatar
gushiqiao committed
889
890
891
892
                        )

                    gr.Markdown("### 低精度量化")
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
893
894
895
896
                        torch_compile = gr.Checkbox(
                            label="Torch编译",
                            value=False,
                            info="使用torch.compile加速推理过程",
gushiqiao's avatar
gushiqiao committed
897
898
                        )

gushiqiao's avatar
gushiqiao committed
899
900
901
902
903
904
                        attention_type = gr.Dropdown(
                            label="注意力算子",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1],
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
905
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
906
907
908
909
910
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
911
912
913
914
915
                        )
                        dit_quant_scheme = gr.Dropdown(
                            label="Dit",
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
916
                            info="Dit模型的量化精度",
gushiqiao's avatar
gushiqiao committed
917
918
                        )
                        t5_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
919
                            label="T5编码器",
gushiqiao's avatar
gushiqiao committed
920
921
                            choices=["fp8", "int8", "bf16"],
                            value="bf16",
gushiqiao's avatar
gushiqiao committed
922
                            info="T5编码器模型的量化精度",
gushiqiao's avatar
gushiqiao committed
923
924
                        )
                        clip_quant_scheme = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
925
                            label="Clip编码器",
gushiqiao's avatar
gushiqiao committed
926
927
                            choices=["fp8", "int8", "fp16"],
                            value="fp16",
gushiqiao's avatar
gushiqiao committed
928
                            info="Clip编码器的量化精度",
gushiqiao's avatar
gushiqiao committed
929
930
                        )
                        precision_mode = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
931
                            label="敏感层精度模式",
gushiqiao's avatar
gushiqiao committed
932
                            choices=["fp32", "bf16"],
gushiqiao's avatar
gushiqiao committed
933
                            value="fp32",
gushiqiao's avatar
gushiqiao committed
934
                            info="选择用于关键模型组件(如归一化和嵌入层)的数值精度。FP32提供更高精度,而BF16在兼容硬件上提高性能。",
gushiqiao's avatar
gushiqiao committed
935
936
937
938
939
940
941
942
943
944
                        )

                    gr.Markdown("### 变分自编码器(VAE)")
                    with gr.Row():
                        use_tiny_vae = gr.Checkbox(
                            label="使用轻量级VAE",
                            value=False,
                            info="使用轻量级VAE模型加速解码过程",
                        )
                        use_tiling_vae = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
945
                            label="VAE分块推理",
gushiqiao's avatar
gushiqiao committed
946
                            value=False,
gushiqiao's avatar
gushiqiao committed
947
                            info="使用VAE分块推理以减少GPU内存使用",
gushiqiao's avatar
gushiqiao committed
948
949
950
951
952
                        )

                    gr.Markdown("### 特征缓存")
                    with gr.Row():
                        enable_teacache = gr.Checkbox(
gushiqiao's avatar
gushiqiao committed
953
                            label="Tea Cache",
gushiqiao's avatar
gushiqiao committed
954
955
956
957
958
959
960
961
                            value=False,
                            info="在推理过程中缓存特征以减少推理步数",
                        )
                        teacache_thresh = gr.Slider(
                            label="Tea Cache阈值",
                            value=0.26,
                            minimum=0,
                            maximum=1,
gushiqiao's avatar
gushiqiao committed
962
963
964
965
966
967
                            info="较高的加速可能导致质量下降 —— 设置为0.1提供约2.0倍加速,设置为0.2提供约3.0倍加速",
                        )
                        use_ret_steps = gr.Checkbox(
                            label="仅缓存关键步骤",
                            value=False,
                            info="勾选时,仅在调度器返回结果的关键步骤写入缓存;未勾选时,在所有步骤写入缓存以确保最高质量",
gushiqiao's avatar
gushiqiao committed
968
969
                        )

gushiqiao's avatar
gushiqiao committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
                enable_auto_config.change(
                    fn=auto_configure,
                    inputs=[enable_auto_config, model_type, resolution],
                    outputs=[
                        torch_compile,
                        lazy_load,
                        rotary_chunk,
                        rotary_chunk_size,
                        clean_cuda_cache,
                        cpu_offload,
                        offload_granularity,
                        offload_ratio,
                        t5_offload_granularity,
                        attention_type,
                        quant_op,
                        dit_quant_scheme,
                        t5_quant_scheme,
                        clip_quant_scheme,
                        precision_mode,
                        use_tiny_vae,
                        use_tiling_vae,
                        enable_teacache,
                        teacache_thresh,
                        use_ret_steps,
                    ],
                )
gushiqiao's avatar
gushiqiao committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
        if task == "i2v":
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    model_type,
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                    image_path,
                ],
                outputs=output_video,
            )
        else:
            infer_btn.click(
                fn=run_inference,
                inputs=[
                    model_type,
                    prompt,
                    negative_prompt,
                    save_video_path,
                    torch_compile,
                    infer_steps,
                    num_frames,
                    resolution,
                    seed,
                    sample_shift,
                    enable_teacache,
                    teacache_thresh,
                    use_ret_steps,
                    enable_cfg,
                    cfg_scale,
                    dit_quant_scheme,
                    t5_quant_scheme,
                    clip_quant_scheme,
                    fps,
                    use_tiny_vae,
                    use_tiling_vae,
                    lazy_load,
                    precision_mode,
                    cpu_offload,
                    offload_granularity,
                    offload_ratio,
                    t5_offload_granularity,
                    attention_type,
                    quant_op,
                    rotary_chunk,
                    rotary_chunk_size,
                    clean_cuda_cache,
                ],
                outputs=output_video,
            )
gushiqiao's avatar
gushiqiao committed
1075
1076
1077
1078
1079

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name)


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument(
        "--model_cls",
        type=str,
        choices=["wan2.1"],
        default="wan2.1",
        help="要使用的模型类别",
    )
gushiqiao's avatar
gushiqiao committed
1089
    parser.add_argument("--task", type=str, required=True, choices=["i2v", "t2v"], help="指定任务类型。'i2v'用于图像到视频转换,'t2v'用于文本到视频生成。")
gushiqiao's avatar
gushiqiao committed
1090
1091
1092
1093
1094
1095
1096
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
    args = parser.parse_args()

    global model_path, model_cls
    model_path = args.model_path
    model_cls = args.model_cls
gushiqiao's avatar
gushiqiao committed
1097
    task = args.task
gushiqiao's avatar
gushiqiao committed
1098

gushiqiao's avatar
gushiqiao committed
1099
    main()