gradio_demo_zh.py 55.7 KB
Newer Older
gushiqiao's avatar
gushiqiao committed
1
2
import argparse
import gc
PengGao's avatar
PengGao committed
3
4
5
6
import glob
import importlib.util
import json
import os
Gu Shiqiao's avatar
Gu Shiqiao committed
7

Gu Shiqiao's avatar
Gu Shiqiao committed
8
os.environ["PROFILING_DEBUG_LEVEL"] = "2"
Gu Shiqiao's avatar
Gu Shiqiao committed
9
10
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["DTYPE"] = "BF16"
PengGao's avatar
PengGao committed
11
import random
gushiqiao's avatar
gushiqiao committed
12
13
from datetime import datetime

PengGao's avatar
PengGao committed
14
import gradio as gr
gushiqiao's avatar
gushiqiao committed
15
import psutil
PengGao's avatar
PengGao committed
16
17
import torch
from loguru import logger
gushiqiao's avatar
gushiqiao committed
18

Gu Shiqiao's avatar
Gu Shiqiao committed
19
20
21
22
23
24
25
26
27
from lightx2v.utils.input_info import set_input_info
from lightx2v.utils.set_config import get_default_config

try:
    from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
except ImportError:
    apply_rope_with_cos_sin_cache_inplace = None


gushiqiao's avatar
gushiqiao committed
28
29
30
31
32
33
34
35
36
logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

gushiqiao's avatar
gushiqiao committed
37
38
39
MAX_NUMPY_SEED = 2**32 - 1


Gu Shiqiao's avatar
Gu Shiqiao committed
40
41
42
43
def scan_model_path_contents(model_path):
    """扫描 model_path 目录,返回可用的文件和子目录"""
    if not model_path or not os.path.exists(model_path):
        return {"dirs": [], "files": [], "safetensors_dirs": [], "pth_files": []}
gushiqiao's avatar
gushiqiao committed
44

Gu Shiqiao's avatar
Gu Shiqiao committed
45
46
47
48
    dirs = []
    files = []
    safetensors_dirs = []
    pth_files = []
gushiqiao's avatar
gushiqiao committed
49

Gu Shiqiao's avatar
Gu Shiqiao committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    try:
        for item in os.listdir(model_path):
            item_path = os.path.join(model_path, item)
            if os.path.isdir(item_path):
                dirs.append(item)
                # 检查目录是否包含 safetensors 文件
                if glob.glob(os.path.join(item_path, "*.safetensors")):
                    safetensors_dirs.append(item)
            elif os.path.isfile(item_path):
                files.append(item)
                if item.endswith(".pth"):
                    pth_files.append(item)
    except Exception as e:
        logger.warning(f"扫描目录失败: {e}")
gushiqiao's avatar
gushiqiao committed
64

Gu Shiqiao's avatar
Gu Shiqiao committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    return {
        "dirs": sorted(dirs),
        "files": sorted(files),
        "safetensors_dirs": sorted(safetensors_dirs),
        "pth_files": sorted(pth_files),
    }


def get_dit_choices(model_path, model_type="wan2.1"):
    """获取 Diffusion 模型可选项(根据模型类型筛选)"""
    contents = scan_model_path_contents(model_path)
    excluded_keywords = ["vae", "tae", "clip", "t5", "high_noise", "low_noise"]
    fp8_supported = is_fp8_supported_gpu()

    if model_type == "wan2.1":
        # wan2.1: 筛选包含 wan2.1 或 Wan2.1 的文件/目录
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.1" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)
gushiqiao's avatar
gushiqiao committed
88
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        # wan2.2: 筛选包含 wan2.2 或 Wan2.2 的文件/目录
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.2" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)

    # 筛选符合条件的目录和文件
    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_high_noise_choices(model_path):
    """获取高噪模型可选项(包含 high_noise 的文件/目录)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "high_noise" in name_lower or "high-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_low_noise_choices(model_path):
    """获取低噪模型可选项(包含 low_noise 的文件/目录)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "low_noise" in name_lower or "low-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_t5_choices(model_path):
    """获取 T5 模型可选项(.pth 或 .safetensors 文件,包含 t5 关键字)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # 从 .pth 文件中筛选
    pth_choices = [f for f in contents["pth_files"] if "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # 从 .safetensors 文件中筛选
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # 从包含 safetensors 的目录中筛选
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "t5" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_clip_choices(model_path):
    """获取 CLIP 模型可选项(.pth 或 .safetensors 文件,包含 clip 关键字)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # 从 .pth 文件中筛选
    pth_choices = [f for f in contents["pth_files"] if "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # 从 .safetensors 文件中筛选
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # 从包含 safetensors 的目录中筛选
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "clip" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_vae_choices(model_path):
    """获取 VAE 模型可选项(.pth 或 .safetensors 文件,包含 vae/VAE/tae 关键字)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # 从 .pth 文件中筛选
    pth_choices = [f for f in contents["pth_files"] if any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # 从 .safetensors 文件中筛选
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # 从包含 safetensors 的目录中筛选
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if any(kw in d.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def detect_quant_scheme(model_name):
    """根据模型名字自动检测量化精度
    - 如果模型名字包含 "int8" → "int8"
    - 如果模型名字包含 "fp8" 且设备支持 → "fp8"
    - 否则返回 None(表示不使用量化)
    """
    if not model_name:
        return None
    name_lower = model_name.lower()
    if "int8" in name_lower:
        return "int8"
    elif "fp8" in name_lower:
        if is_fp8_supported_gpu():
            return "fp8"
        else:
            # 设备不支持fp8,返回None(使用默认精度)
            return None
    return None


def update_model_path_options(model_path, model_type="wan2.1"):
    """当 model_path 或 model_type 改变时,更新所有模型路径选择器"""
    dit_choices = get_dit_choices(model_path, model_type)
    high_noise_choices = get_high_noise_choices(model_path)
    low_noise_choices = get_low_noise_choices(model_path)
    t5_choices = get_t5_choices(model_path)
    clip_choices = get_clip_choices(model_path)
    vae_choices = get_vae_choices(model_path)

    return (
        gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
        gr.update(choices=high_noise_choices, value=high_noise_choices[0] if high_noise_choices else ""),
        gr.update(choices=low_noise_choices, value=low_noise_choices[0] if low_noise_choices else ""),
        gr.update(choices=t5_choices, value=t5_choices[0] if t5_choices else ""),
        gr.update(choices=clip_choices, value=clip_choices[0] if clip_choices else ""),
        gr.update(choices=vae_choices, value=vae_choices[0] if vae_choices else ""),
    )
gushiqiao's avatar
gushiqiao committed
230
231


gushiqiao's avatar
gushiqiao committed
232
233
234
def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)

gushiqiao's avatar
gushiqiao committed
235

gushiqiao's avatar
gushiqiao committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

Gu Shiqiao's avatar
Gu Shiqiao committed
283
284
    sage_installed = is_module_installed("sageattention")
    if sage_installed:
gushiqiao's avatar
gushiqiao committed
285
286
287
288
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

Gu Shiqiao's avatar
Gu Shiqiao committed
289
290
291
292
293
294
    sage3_installed = is_module_installed("sageattn3")
    if sage3_installed:
        available_ops.append(("sage_attn3", True))
    else:
        available_ops.append(("sage_attn3", False))

gushiqiao's avatar
gushiqiao committed
295
296
297
298
299
300
    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

gushiqiao's avatar
gushiqiao committed
301
302
303
304
305
306
307
308
309
    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
gushiqiao's avatar
gushiqiao committed
310
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
gushiqiao's avatar
gushiqiao committed
311
312
313
314
315
316
317
318
319
            return total_memory
    except Exception as e:
        logger.warning(f"获取GPU内存失败: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3
gushiqiao's avatar
gushiqiao committed
320
321


gushiqiao's avatar
gushiqiao committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        import psutil

        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


gushiqiao's avatar
gushiqiao committed
342
343
def generate_unique_filename(output_dir):
    os.makedirs(output_dir, exist_ok=True)
gushiqiao's avatar
gushiqiao committed
344
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
Gu Shiqiao's avatar
Gu Shiqiao committed
345
    return os.path.join(output_dir, f"{timestamp}.mp4")
gushiqiao's avatar
gushiqiao committed
346
347


gushiqiao's avatar
gushiqiao committed
348
349
350
351
352
353
354
355
def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


gushiqiao's avatar
gushiqiao committed
356
357
358
359
360
361
362
363
364
365
366
367
def is_ada_architecture_gpu():
    if not torch.cuda.is_available():
        return False
    try:
        gpu_name = torch.cuda.get_device_name(0).upper()
        ada_keywords = ["RTX 40", "RTX40", "4090", "4080", "4070", "4060"]
        return any(keyword in gpu_name for keyword in ada_keywords)
    except Exception as e:
        logger.warning(f"Failed to get GPU name: {e}")
        return False


gushiqiao's avatar
gushiqiao committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def get_quantization_options(model_path):
    """根据model_path动态获取量化选项"""
    import os

    # 检查子目录
    subdirs = ["original", "fp8", "int8"]
    has_subdirs = {subdir: os.path.exists(os.path.join(model_path, subdir)) for subdir in subdirs}

    # 检查根目录下的原始文件
    t5_bf16_exists = os.path.exists(os.path.join(model_path, "models_t5_umt5-xxl-enc-bf16.pth"))
    clip_fp16_exists = os.path.exists(os.path.join(model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"))

    # 生成选项
    def get_choices(has_subdirs, original_type, fp8_type, int8_type, fallback_type, has_original_file=False):
        choices = []
        if has_subdirs["original"]:
            choices.append(original_type)
        if has_subdirs["fp8"]:
            choices.append(fp8_type)
        if has_subdirs["int8"]:
            choices.append(int8_type)

        # 如果没有子目录但有原始文件,添加原始类型
gushiqiao's avatar
gushiqiao committed
391
392
393
        if has_original_file:
            if not choices or "original" not in choices:
                choices.append(original_type)
gushiqiao's avatar
gushiqiao committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

        # 如果没有任何选项,使用默认值
        if not choices:
            choices = [fallback_type]

        return choices, choices[0]

    # DIT选项
    dit_choices, dit_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16")

    # T5选项 - 检查是否有原始文件
    t5_choices, t5_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16", t5_bf16_exists)

    # CLIP选项 - 检查是否有原始文件
    clip_choices, clip_default = get_choices(has_subdirs, "fp16", "fp8", "int8", "fp16", clip_fp16_exists)

    return {"dit_choices": dit_choices, "dit_default": dit_default, "t5_choices": t5_choices, "t5_default": t5_default, "clip_choices": clip_choices, "clip_default": clip_default}


Gu Shiqiao's avatar
Gu Shiqiao committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
def determine_model_cls(model_type, dit_name, high_noise_name):
    """根据模型类型和文件名确定 model_cls"""
    # 确定要检查的文件名
    if model_type == "wan2.1":
        check_name = dit_name.lower() if dit_name else ""
        is_distill = "4step" in check_name
        return "wan2.1_distill" if is_distill else "wan2.1"
    else:
        # wan2.2
        check_name = high_noise_name.lower() if high_noise_name else ""
        is_distill = "4step" in check_name
        return "wan2.2_moe_distill" if is_distill else "wan2.2_moe"


gushiqiao's avatar
gushiqiao committed
427
428
global_runner = None
current_config = None
Gu Shiqiao's avatar
Gu Shiqiao committed
429
430
431
cur_dit_path = None
cur_t5_path = None
cur_clip_path = None
gushiqiao's avatar
gushiqiao committed
432
433
434
435
436
437
438
439
440

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
Gu Shiqiao's avatar
Gu Shiqiao committed
441
442
443
# 优先级顺序
attn_priority = ["sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
# 按优先级排序,已安装的在前,未安装的在后
gushiqiao's avatar
gushiqiao committed
444
attn_op_choices = []
Gu Shiqiao's avatar
Gu Shiqiao committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
attn_op_dict = dict(available_attn_ops)

# 先添加已安装的(按优先级)
for op_name in attn_priority:
    if op_name in attn_op_dict and attn_op_dict[op_name]:
        status_text = "✅ 已安装"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# 再添加未安装的(按优先级)
for op_name in attn_priority:
    if op_name in attn_op_dict and not attn_op_dict[op_name]:
        status_text = "❌ 未安装"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# 添加其他不在优先级列表中的算子(已安装的在前)
other_ops = [(op_name, is_installed) for op_name, is_installed in available_attn_ops if op_name not in attn_priority]
for op_name, is_installed in sorted(other_ops, key=lambda x: not x[1]):  # 已安装的在前
gushiqiao's avatar
gushiqiao committed
464
465
466
467
468
    status_text = "✅ 已安装" if is_installed else "❌ 未安装"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


gushiqiao's avatar
gushiqiao committed
469
470
471
def run_inference(
    prompt,
    negative_prompt,
472
    save_result_path,
gushiqiao's avatar
gushiqiao committed
473
474
475
476
477
478
479
480
481
482
483
484
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_cfg,
    cfg_scale,
    fps,
    use_tiling_vae,
    lazy_load,
    cpu_offload,
    offload_granularity,
gushiqiao's avatar
gushiqiao committed
485
    t5_cpu_offload,
Gu Shiqiao's avatar
Gu Shiqiao committed
486
487
    clip_cpu_offload,
    vae_cpu_offload,
gushiqiao's avatar
gushiqiao committed
488
    unload_modules,
gushiqiao's avatar
gushiqiao committed
489
490
    attention_type,
    quant_op,
Gu Shiqiao's avatar
Gu Shiqiao committed
491
492
    rope_chunk,
    rope_chunk_size,
gushiqiao's avatar
gushiqiao committed
493
    clean_cuda_cache,
Gu Shiqiao's avatar
Gu Shiqiao committed
494
495
496
497
498
499
500
501
502
    model_path_input,
    model_type_input,
    task_type_input,
    dit_path_input,
    high_noise_path_input,
    low_noise_path_input,
    t5_path_input,
    clip_path_input,
    vae_path_input,
gushiqiao's avatar
gushiqiao committed
503
    image_path=None,
gushiqiao's avatar
gushiqiao committed
504
):
gushiqiao's avatar
gushiqiao committed
505
506
    cleanup_memory()

gushiqiao's avatar
gushiqiao committed
507
508
509
    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

Gu Shiqiao's avatar
Gu Shiqiao committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    global global_runner, current_config, model_path, model_cls
    global cur_dit_path, cur_t5_path, cur_clip_path

    task = task_type_input
    model_cls = determine_model_cls(model_type_input, dit_path_input, high_noise_path_input)
    logger.info(f"自动确定 model_cls: {model_cls} (模型类型: {model_type_input})")

    if model_type_input == "wan2.1":
        dit_quant_detected = detect_quant_scheme(dit_path_input)
    else:
        dit_quant_detected = detect_quant_scheme(high_noise_path_input)
    t5_quant_detected = detect_quant_scheme(t5_path_input)
    clip_quant_detected = detect_quant_scheme(clip_path_input)
    logger.info(f"自动检测量化精度 - DIT: {dit_quant_detected}, T5: {t5_quant_detected}, CLIP: {clip_quant_detected}")

    if model_path_input and model_path_input.strip():
        model_path = model_path_input.strip()
gushiqiao's avatar
gushiqiao committed
527
528
529
530

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)
gushiqiao's avatar
gushiqiao committed
531
532
    else:
        model_config = {}
gushiqiao's avatar
gushiqiao committed
533

534
    save_result_path = generate_unique_filename(output_dir)
gushiqiao's avatar
gushiqiao committed
535

Gu Shiqiao's avatar
Gu Shiqiao committed
536
537
538
539
540
541
542
543
544
545
    is_dit_quant = dit_quant_detected != "bf16"
    is_t5_quant = t5_quant_detected != "bf16"
    is_clip_quant = clip_quant_detected != "fp16"

    dit_quantized_ckpt = None
    dit_original_ckpt = None
    high_noise_quantized_ckpt = None
    low_noise_quantized_ckpt = None
    high_noise_original_ckpt = None
    low_noise_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
546

Gu Shiqiao's avatar
Gu Shiqiao committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    if is_dit_quant:
        dit_quant_scheme = f"{dit_quant_detected}-{quant_op}"
        if "wan2.1" in model_cls:
            dit_quantized_ckpt = os.path.join(model_path, dit_path_input)
        else:
            high_noise_quantized_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_quantized_ckpt = os.path.join(model_path, low_noise_path_input)
    else:
        dit_quantized_ckpt = "Default"
        if "wan2.1" in model_cls:
            dit_original_ckpt = os.path.join(model_path, dit_path_input)
        else:
            high_noise_original_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_original_ckpt = os.path.join(model_path, low_noise_path_input)

    # 使用前端选择的 T5 路径
gushiqiao's avatar
gushiqiao committed
563
    if is_t5_quant:
Gu Shiqiao's avatar
Gu Shiqiao committed
564
565
        t5_quantized_ckpt = os.path.join(model_path, t5_path_input)
        t5_quant_scheme = f"{t5_quant_detected}-{quant_op}"
gushiqiao's avatar
gushiqiao committed
566
        t5_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
567
    else:
gushiqiao's avatar
gushiqiao committed
568
        t5_quantized_ckpt = None
Gu Shiqiao's avatar
Gu Shiqiao committed
569
570
        t5_quant_scheme = None
        t5_original_ckpt = os.path.join(model_path, t5_path_input)
gushiqiao's avatar
gushiqiao committed
571

Gu Shiqiao's avatar
Gu Shiqiao committed
572
    # 使用前端选择的 CLIP 路径
gushiqiao's avatar
gushiqiao committed
573
    if is_clip_quant:
Gu Shiqiao's avatar
Gu Shiqiao committed
574
575
        clip_quantized_ckpt = os.path.join(model_path, clip_path_input)
        clip_quant_scheme = f"{clip_quant_detected}-{quant_op}"
gushiqiao's avatar
gushiqiao committed
576
        clip_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
577
    else:
gushiqiao's avatar
gushiqiao committed
578
        clip_quantized_ckpt = None
Gu Shiqiao's avatar
Gu Shiqiao committed
579
580
581
582
583
584
585
586
587
588
        clip_quant_scheme = None
        clip_original_ckpt = os.path.join(model_path, clip_path_input)

    if model_type_input == "wan2.1":
        current_dit_path = dit_path_input
    else:
        current_dit_path = f"{high_noise_path_input}|{low_noise_path_input}" if high_noise_path_input and low_noise_path_input else None

    current_t5_path = t5_path_input
    current_clip_path = clip_path_input
gushiqiao's avatar
gushiqiao committed
589

gushiqiao's avatar
gushiqiao committed
590
591
    needs_reinit = (
        lazy_load
gushiqiao's avatar
gushiqiao committed
592
        or unload_modules
gushiqiao's avatar
gushiqiao committed
593
594
        or global_runner is None
        or current_config is None
Gu Shiqiao's avatar
Gu Shiqiao committed
595
596
597
598
599
600
        or cur_dit_path is None
        or cur_dit_path != current_dit_path
        or cur_t5_path is None
        or cur_t5_path != current_t5_path
        or cur_clip_path is None
        or cur_clip_path != current_clip_path
gushiqiao's avatar
gushiqiao committed
601
    )
gushiqiao's avatar
gushiqiao committed
602

Gu Shiqiao's avatar
Gu Shiqiao committed
603
604
    if cfg_scale == 1:
        enable_cfg = False
gushiqiao's avatar
gushiqiao committed
605
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
606
        enable_cfg = True
gushiqiao's avatar
gushiqiao committed
607

Gu Shiqiao's avatar
Gu Shiqiao committed
608
609
610
611
    vae_name_lower = vae_path_input.lower() if vae_path_input else ""
    use_tae = "tae" in vae_name_lower or "lighttae" in vae_name_lower
    use_lightvae = "lightvae" in vae_name_lower
    need_scaled = "lighttae" in vae_name_lower
gushiqiao's avatar
gushiqiao committed
612

Gu Shiqiao's avatar
Gu Shiqiao committed
613
614
615
    logger.info(f"VAE 配置 - use_tae: {use_tae}, use_lightvae: {use_lightvae}, need_scaled: {need_scaled} (VAE: {vae_path_input})")

    config_graio = {
gushiqiao's avatar
gushiqiao committed
616
617
618
619
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
gushiqiao's avatar
gushiqiao committed
620
621
622
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
gushiqiao's avatar
gushiqiao committed
623
624
625
626
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "fps": fps,
Gu Shiqiao's avatar
Gu Shiqiao committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
        "feature_caching": "NoCaching",
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "denoising_step_list": [1000, 750, 500, 250],
        "cpu_offload": True if "wan2.2" in model_cls else cpu_offload,
        "offload_granularity": "phase" if "wan2.2" in model_cls else offload_granularity,
gushiqiao's avatar
gushiqiao committed
641
        "t5_cpu_offload": t5_cpu_offload,
Gu Shiqiao's avatar
Gu Shiqiao committed
642
643
644
645
646
647
648
649
650
651
652
        "clip_cpu_offload": clip_cpu_offload,
        "vae_cpu_offload": vae_cpu_offload,
        "dit_quantized": is_dit_quant,
        "dit_quant_scheme": dit_quant_scheme,
        "dit_quantized_ckpt": dit_quantized_ckpt,
        "dit_original_ckpt": dit_original_ckpt,
        "high_noise_quantized_ckpt": high_noise_quantized_ckpt,
        "low_noise_quantized_ckpt": low_noise_quantized_ckpt,
        "high_noise_original_ckpt": high_noise_original_ckpt,
        "low_noise_original_ckpt": low_noise_original_ckpt,
        "t5_original_ckpt": t5_original_ckpt,
gushiqiao's avatar
gushiqiao committed
653
        "t5_quantized": is_t5_quant,
gushiqiao's avatar
gushiqiao committed
654
        "t5_quantized_ckpt": t5_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
655
        "t5_quant_scheme": t5_quant_scheme,
gushiqiao's avatar
gushiqiao committed
656
        "clip_original_ckpt": clip_original_ckpt,
gushiqiao's avatar
gushiqiao committed
657
        "clip_quantized": is_clip_quant,
gushiqiao's avatar
gushiqiao committed
658
        "clip_quantized_ckpt": clip_quantized_ckpt,
gushiqiao's avatar
gushiqiao committed
659
        "clip_quant_scheme": clip_quant_scheme,
Gu Shiqiao's avatar
Gu Shiqiao committed
660
        "vae_path": os.path.join(model_path, vae_path_input),
gushiqiao's avatar
gushiqiao committed
661
        "use_tiling_vae": use_tiling_vae,
gushiqiao's avatar
gushiqiao committed
662
        "use_tae": use_tae,
Gu Shiqiao's avatar
Gu Shiqiao committed
663
664
        "use_lightvae": use_lightvae,
        "need_scaled": need_scaled,
gushiqiao's avatar
gushiqiao committed
665
        "lazy_load": lazy_load,
Gu Shiqiao's avatar
Gu Shiqiao committed
666
667
        "rope_chunk": rope_chunk,
        "rope_chunk_size": rope_chunk_size,
gushiqiao's avatar
gushiqiao committed
668
        "clean_cuda_cache": clean_cuda_cache,
Gu Shiqiao's avatar
Gu Shiqiao committed
669
670
671
672
673
674
675
        "unload_modules": unload_modules,
        "seq_parallel": False,
        "warm_up_cpu_buffers": False,
        "boundary_step_index": 2,
        "boundary": 0.900,
        "use_image_encoder": False if "wan2.2" in model_cls else True,
        "rope_type": "flashinfer" if apply_rope_with_cos_sin_cache_inplace else "torch",
gushiqiao's avatar
gushiqiao committed
676
677
678
679
    }

    args = argparse.Namespace(
        model_cls=model_cls,
Gu Shiqiao's avatar
Gu Shiqiao committed
680
        seed=seed,
gushiqiao's avatar
gushiqiao committed
681
682
683
684
685
686
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
687
        save_result_path=save_result_path,
Gu Shiqiao's avatar
Gu Shiqiao committed
688
        return_result_tensor=False,
gushiqiao's avatar
gushiqiao committed
689
690
    )

Gu Shiqiao's avatar
Gu Shiqiao committed
691
    config = get_default_config()
gushiqiao's avatar
gushiqiao committed
692
693
    config.update({k: v for k, v in vars(args).items()})
    config.update(model_config)
Gu Shiqiao's avatar
Gu Shiqiao committed
694
    config.update(config_graio)
gushiqiao's avatar
gushiqiao committed
695
696
697
698

    logger.info(f"使用模型: {model_path}")
    logger.info(f"推理配置:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

gushiqiao's avatar
gushiqiao committed
699
    # Initialize or reuse the runner
gushiqiao's avatar
gushiqiao committed
700
701
702
703
704
705
706
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

gushiqiao's avatar
gushiqiao committed
707
708
        from lightx2v.infer import init_runner  # noqa

gushiqiao's avatar
gushiqiao committed
709
        runner = init_runner(config)
Gu Shiqiao's avatar
Gu Shiqiao committed
710
711
        input_info = set_input_info(args)

gushiqiao's avatar
gushiqiao committed
712
        current_config = config
Gu Shiqiao's avatar
Gu Shiqiao committed
713
714
715
        cur_dit_path = current_dit_path
        cur_t5_path = current_t5_path
        cur_clip_path = current_clip_path
gushiqiao's avatar
gushiqiao committed
716
717
718

        if not lazy_load:
            global_runner = runner
gushiqiao's avatar
gushiqiao committed
719
720
    else:
        runner.config = config
gushiqiao's avatar
gushiqiao committed
721

Gu Shiqiao's avatar
Gu Shiqiao committed
722
    runner.run_pipeline(input_info)
gushiqiao's avatar
gushiqiao committed
723
    cleanup_memory()
gushiqiao's avatar
gushiqiao committed
724

725
    return save_result_path
gushiqiao's avatar
gushiqiao committed
726
727


gushiqiao's avatar
gushiqiao committed
728
729
730
731
732
def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


Gu Shiqiao's avatar
Gu Shiqiao committed
733
734
def auto_configure(resolution):
    """根据机器配置和分辨率自动设置推理选项"""
gushiqiao's avatar
gushiqiao committed
735
736
    default_config = {
        "lazy_load_val": False,
Gu Shiqiao's avatar
Gu Shiqiao committed
737
738
        "rope_chunk_val": False,
        "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
739
740
741
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
gushiqiao's avatar
gushiqiao committed
742
        "t5_cpu_offload_val": False,
Gu Shiqiao's avatar
Gu Shiqiao committed
743
744
        "clip_cpu_offload_val": False,
        "vae_cpu_offload_val": False,
gushiqiao's avatar
gushiqiao committed
745
        "unload_modules_val": False,
gushiqiao's avatar
gushiqiao committed
746
747
748
749
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "use_tiling_vae_val": False,
    }
gushiqiao's avatar
gushiqiao committed
750

gushiqiao's avatar
gushiqiao committed
751
752
753
    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

Gu Shiqiao's avatar
Gu Shiqiao committed
754
    attn_priority = ["sage_attn3", "sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
gushiqiao's avatar
gushiqiao committed
755
756
757
758

    if is_ada_architecture_gpu():
        quant_op_priority = ["q8f", "vllm", "sgl"]
    else:
Gu Shiqiao's avatar
Gu Shiqiao committed
759
        quant_op_priority = ["vllm", "sgl", "q8f"]
gushiqiao's avatar
gushiqiao committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

Gu Shiqiao's avatar
Gu Shiqiao committed
789
    if res == "720p":
gushiqiao's avatar
gushiqiao committed
790
791
        gpu_rules = [
            (80, {}),
Gu Shiqiao's avatar
Gu Shiqiao committed
792
793
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
gushiqiao's avatar
gushiqiao committed
794
795
796
797
798
            (
                24,
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
799
800
801
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
802
803
804
805
806
807
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
808
809
810
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
811
812
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
Gu Shiqiao's avatar
Gu Shiqiao committed
813
814
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
815
816
817
818
819
820
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
821
822
823
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
824
825
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
Gu Shiqiao's avatar
Gu Shiqiao committed
826
827
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
gushiqiao's avatar
gushiqiao committed
828
829
830
831
                    "clean_cuda_cache_val": True,
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
832

Gu Shiqiao's avatar
Gu Shiqiao committed
833
    else:
gushiqiao's avatar
gushiqiao committed
834
835
        gpu_rules = [
            (80, {}),
Gu Shiqiao's avatar
Gu Shiqiao committed
836
837
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
gushiqiao's avatar
gushiqiao committed
838
            (
Gu Shiqiao's avatar
Gu Shiqiao committed
839
                24,
gushiqiao's avatar
gushiqiao committed
840
841
                {
                    "cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
842
843
844
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
gushiqiao's avatar
gushiqiao committed
845
846
847
848
849
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
gushiqiao's avatar
gushiqiao committed
850
                {
Gu Shiqiao's avatar
Gu Shiqiao committed
851
                    "cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
852
853
854
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
855
856
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
gushiqiao's avatar
gushiqiao committed
857
                },
gushiqiao's avatar
gushiqiao committed
858
            ),
gushiqiao's avatar
gushiqiao committed
859
            (
Gu Shiqiao's avatar
Gu Shiqiao committed
860
                8,
gushiqiao's avatar
gushiqiao committed
861
                {
Gu Shiqiao's avatar
Gu Shiqiao committed
862
                    "cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
863
864
865
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
Gu Shiqiao's avatar
Gu Shiqiao committed
866
867
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
gushiqiao's avatar
gushiqiao committed
868
869
870
                },
            ),
        ]
gushiqiao's avatar
gushiqiao committed
871

Gu Shiqiao's avatar
Gu Shiqiao committed
872
873
874
875
876
877
878
879
880
881
882
883
884
    cpu_rules = [
        (128, {}),
        (64, {}),
        (32, {"unload_modules_val": True}),
        (
            16,
            {
                "lazy_load_val": True,
                "unload_modules_val": True,
            },
        ),
    ]

gushiqiao's avatar
gushiqiao committed
885
886
887
888
889
890
891
892
893
894
    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

Gu Shiqiao's avatar
Gu Shiqiao committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    return (
        gr.update(value=default_config["lazy_load_val"]),
        gr.update(value=default_config["rope_chunk_val"]),
        gr.update(value=default_config["rope_chunk_size_val"]),
        gr.update(value=default_config["clean_cuda_cache_val"]),
        gr.update(value=default_config["cpu_offload_val"]),
        gr.update(value=default_config["offload_granularity_val"]),
        gr.update(value=default_config["t5_cpu_offload_val"]),
        gr.update(value=default_config["clip_cpu_offload_val"]),
        gr.update(value=default_config["vae_cpu_offload_val"]),
        gr.update(value=default_config["unload_modules_val"]),
        gr.update(value=default_config["attention_type_val"]),
        gr.update(value=default_config["quant_op_val"]),
        gr.update(value=default_config["use_tiling_vae_val"]),
    )
gushiqiao's avatar
gushiqiao committed
910
911


Gu Shiqiao's avatar
Gu Shiqiao committed
912
css = """
Gu Shiqiao's avatar
Gu Shiqiao committed
913
        .main-content { max-width: 1600px; margin: auto; padding: 20px; }
gushiqiao's avatar
gushiqiao committed
914
        .warning { color: #ff6b6b; font-weight: bold; }
Gu Shiqiao's avatar
Gu Shiqiao committed
915
916
917
918
919
920
921
922

        /* 模型配置区域样式 */
        .model-config {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
gushiqiao's avatar
gushiqiao committed
923
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
924
925
926
927
928
929
930
931

        /* 输入参数区域样式 */
        .input-params {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #fff5f5 0%, #ffeef0 100%);
gushiqiao's avatar
gushiqiao committed
932
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
933
934
935
936
937
938
939
940

        /* 输出视频区域样式 */
        .output-video {
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 20px;
            background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%);
            min-height: 400px;
gushiqiao's avatar
gushiqiao committed
941
        }
gushiqiao's avatar
gushiqiao committed
942

Gu Shiqiao's avatar
Gu Shiqiao committed
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
        /* 生成按钮样式 */
        .generate-btn {
            width: 100%;
            margin-top: 20px;
            padding: 15px 30px !important;
            font-size: 18px !important;
            font-weight: bold !important;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
            border: none !important;
            border-radius: 10px !important;
            box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
            transition: all 0.3s ease !important;
        }
        .generate-btn:hover {
            transform: translateY(-2px);
            box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
        }
gushiqiao's avatar
gushiqiao committed
960

Gu Shiqiao's avatar
Gu Shiqiao committed
961
962
963
964
965
966
967
968
        /* Accordion 标题样式 */
        .model-config .gr-accordion-header,
        .input-params .gr-accordion-header,
        .output-video .gr-accordion-header {
            font-size: 20px !important;
            font-weight: bold !important;
            padding: 15px !important;
        }
gushiqiao's avatar
gushiqiao committed
969

Gu Shiqiao's avatar
Gu Shiqiao committed
970
971
972
973
        /* 优化间距 */
        .gr-row {
            margin-bottom: 15px;
        }
gushiqiao's avatar
gushiqiao committed
974

Gu Shiqiao's avatar
Gu Shiqiao committed
975
976
977
978
979
        /* 视频播放器样式 */
        .output-video video {
            border-radius: 10px;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
        }
Gu Shiqiao's avatar
Gu Shiqiao committed
980
    """
Gu Shiqiao's avatar
Gu Shiqiao committed
981

Gu Shiqiao's avatar
Gu Shiqiao committed
982
983
984
985
986

def main():
    with gr.Blocks(title="Lightx2v (轻量级视频推理和生成引擎)") as demo:
        gr.Markdown(f"# 🎬 LightX2V 视频生成器")
        gr.HTML(f"<style>{css}</style>")
Gu Shiqiao's avatar
Gu Shiqiao committed
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        # 主布局:左右分栏
        with gr.Row():
            # 左侧:配置和输入区域
            with gr.Column(scale=5):
                # 模型配置区域
                with gr.Accordion("🗂️ 模型配置", open=True, elem_classes=["model-config"]):
                    # FP8 支持提示
                    if not is_fp8_supported_gpu():
                        gr.Markdown("⚠️ **您的设备不支持fp8推理**,已自动隐藏包含fp8的模型选项。")

                    # 隐藏的状态组件
                    model_path_input = gr.Textbox(value=model_path, visible=False)

                    # 模型类型 + 任务类型
gushiqiao's avatar
gushiqiao committed
1001
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
                        model_type_input = gr.Radio(
                            label="模型类型",
                            choices=["wan2.1", "wan2.2"],
                            value="wan2.1",
                            info="wan2.2 需要分别指定高噪模型和低噪模型",
                        )
                        task_type_input = gr.Radio(
                            label="任务类型",
                            choices=["i2v", "t2v"],
                            value="i2v",
                            info="i2v: 图生视频, t2v: 文生视频",
gushiqiao's avatar
gushiqiao committed
1013
1014
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1015
1016
1017
1018
1019
1020
1021
1022
                    # wan2.1:Diffusion模型(单独一行)
                    with gr.Row() as wan21_row:
                        dit_path_input = gr.Dropdown(
                            label="🎨 Diffusion模型",
                            choices=get_dit_choices(model_path, "wan2.1"),
                            value=get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else "",
                            allow_custom_value=True,
                            visible=True,
gushiqiao's avatar
gushiqiao committed
1023
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1024
1025
1026
1027
1028
1029
1030
1031

                    # wan2.2 专用:高噪模型 + 低噪模型(默认隐藏)
                    with gr.Row(visible=False) as wan22_row:
                        high_noise_path_input = gr.Dropdown(
                            label="🔊 高噪模型",
                            choices=get_high_noise_choices(model_path),
                            value=get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1032
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1033
1034
1035
1036
1037
                        low_noise_path_input = gr.Dropdown(
                            label="🔇 低噪模型",
                            choices=get_low_noise_choices(model_path),
                            value=get_low_noise_choices(model_path)[0] if get_low_noise_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1038
1039
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1040
                    # 文本编码器(单独一行)
gushiqiao's avatar
gushiqiao committed
1041
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1042
1043
1044
1045
1046
                        t5_path_input = gr.Dropdown(
                            label="📝 文本编码器",
                            choices=get_t5_choices(model_path),
                            value=get_t5_choices(model_path)[0] if get_t5_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1047
                        )
gushiqiao's avatar
gushiqiao committed
1048

Gu Shiqiao's avatar
Gu Shiqiao committed
1049
1050
1051
1052
1053
1054
1055
                    # 图像编码器 + VAE解码器
                    with gr.Row():
                        clip_path_input = gr.Dropdown(
                            label="🖼️ 图像编码器",
                            choices=get_clip_choices(model_path),
                            value=get_clip_choices(model_path)[0] if get_clip_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1056
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1057
1058
1059
1060
1061
                        vae_path_input = gr.Dropdown(
                            label="🎞️ VAE解码器",
                            choices=get_vae_choices(model_path),
                            value=get_vae_choices(model_path)[0] if get_vae_choices(model_path) else "",
                            allow_custom_value=True,
gushiqiao's avatar
gushiqiao committed
1062
1063
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1064
                    # 注意力算子和量化矩阵乘法算子
gushiqiao's avatar
gushiqiao committed
1065
                    with gr.Row():
gushiqiao's avatar
gushiqiao committed
1066
                        attention_type = gr.Dropdown(
Gu Shiqiao's avatar
Gu Shiqiao committed
1067
                            label="⚡ 注意力算子",
gushiqiao's avatar
gushiqiao committed
1068
                            choices=[op[1] for op in attn_op_choices],
Gu Shiqiao's avatar
Gu Shiqiao committed
1069
                            value=attn_op_choices[0][1] if attn_op_choices else "",
gushiqiao's avatar
gushiqiao committed
1070
1071
                            info="使用适当的注意力算子加速推理",
                        )
gushiqiao's avatar
gushiqiao committed
1072
                        quant_op = gr.Dropdown(
gushiqiao's avatar
gushiqiao committed
1073
1074
1075
1076
1077
                            label="量化矩阵乘法算子",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="选择量化矩阵乘法算子以加速推理",
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1078
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

                    # 判断模型是否是 distill 版本
                    def is_distill_model(model_type, dit_path, high_noise_path):
                        """根据模型类型和路径判断是否是 distill 版本"""
                        if model_type == "wan2.1":
                            check_name = dit_path.lower() if dit_path else ""
                        else:
                            check_name = high_noise_path.lower() if high_noise_path else ""
                        return "4step" in check_name

                    # 模型类型切换事件
                    def on_model_type_change(model_type, model_path_val):
                        if model_type == "wan2.2":
                            return gr.update(visible=False), gr.update(visible=True), gr.update()
                        else:
                            # 更新 wan2.1 的 Diffusion 模型选项
                            dit_choices = get_dit_choices(model_path_val, "wan2.1")
                            return (
                                gr.update(visible=True),
                                gr.update(visible=False),
                                gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
                            )

                    model_type_input.change(
                        fn=on_model_type_change,
                        inputs=[model_type_input, model_path_input],
                        outputs=[wan21_row, wan22_row, dit_path_input],
                    )

                # 输入参数区域
                with gr.Accordion("📥 输入参数", open=True, elem_classes=["input-params"]):
                    # 图片输入(i2v 时显示)
                    with gr.Row(visible=True) as image_input_row:
                        image_path = gr.Image(
                            label="输入图像",
                            type="filepath",
                            height=300,
                            interactive=True,
gushiqiao's avatar
gushiqiao committed
1117
1118
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
                    # 任务类型切换事件
                    def on_task_type_change(task_type):
                        return gr.update(visible=(task_type == "i2v"))

                    task_type_input.change(
                        fn=on_task_type_change,
                        inputs=[task_type_input],
                        outputs=[image_input_row],
                    )

                    with gr.Row():
                        with gr.Column():
                            prompt = gr.Textbox(
                                label="提示词",
                                lines=3,
                                placeholder="描述视频内容...",
                                max_lines=5,
                            )
                        with gr.Column():
                            negative_prompt = gr.Textbox(
                                label="负向提示词",
                                lines=3,
                                placeholder="不希望出现在视频中的内容...",
                                max_lines=5,
                                value="镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
                            )
                        with gr.Column():
                            resolution = gr.Dropdown(
                                choices=[
                                    # 720p
                                    ("1280x720 (16:9, 720p)", "1280x720"),
                                    ("720x1280 (9:16, 720p)", "720x1280"),
                                    ("1280x544 (21:9, 720p)", "1280x544"),
                                    ("544x1280 (9:21, 720p)", "544x1280"),
                                    ("1104x832 (4:3, 720p)", "1104x832"),
                                    ("832x1104 (3:4, 720p)", "832x1104"),
                                    ("960x960 (1:1, 720p)", "960x960"),
                                    # 480p
                                    ("960x544 (16:9, 540p)", "960x544"),
                                    ("544x960 (9:16, 540p)", "544x960"),
                                    ("832x480 (16:9, 480p)", "832x480"),
                                    ("480x832 (9:16, 480p)", "480x832"),
                                    ("832x624 (4:3, 480p)", "832x624"),
                                    ("624x832 (3:4, 480p)", "624x832"),
                                    ("720x720 (1:1, 480p)", "720x720"),
                                    ("512x512 (1:1, 480p)", "512x512"),
                                ],
                                value="832x480",
                                label="最大分辨率",
                            )

                        with gr.Column(scale=9):
                            seed = gr.Slider(
                                label="随机种子",
                                minimum=0,
                                maximum=MAX_NUMPY_SEED,
                                step=1,
                                value=generate_random_seed(),
                            )
                        with gr.Column():
                            default_dit = get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else ""
                            default_high_noise = get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else ""
                            default_is_distill = is_distill_model("wan2.1", default_dit, default_high_noise)

                            if default_is_distill:
                                infer_steps = gr.Slider(
                                    label="推理步数",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=4,
                                    info="蒸馏模型推理步数默认为4。",
                                )
                            else:
                                infer_steps = gr.Slider(
                                    label="推理步数",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=40,
                                    info="视频生成的推理步数。增加步数可能提高质量但降低速度。",
                                )

                            # 当模型路径改变时,动态更新推理步数
                            def update_infer_steps(model_type, dit_path, high_noise_path):
                                is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                                if is_distill:
                                    return gr.update(minimum=1, maximum=100, value=4, interactive=True)
                                else:
                                    return gr.update(minimum=1, maximum=100, value=40, interactive=True)

                            # 监听模型路径变化
                            dit_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            high_noise_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            model_type_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )

                    # 根据模型类别设置默认CFG
                    # CFG缩放因子:distill 时默认为 1,否则默认为 5
                    default_cfg_scale = 1 if default_is_distill else 5
                    # enable_cfg 不暴露到前端,根据 cfg_scale 自动设置
                    # 如果 cfg_scale == 1,则 enable_cfg = False,否则 enable_cfg = True
                    default_enable_cfg = False if default_cfg_scale == 1 else True
                    enable_cfg = gr.Checkbox(
                        label="启用无分类器引导",
                        value=default_enable_cfg,
                        visible=False,  # 隐藏,不暴露到前端
                    )

gushiqiao's avatar
gushiqiao committed
1239
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1240
1241
1242
1243
1244
1245
1246
                        sample_shift = gr.Slider(
                            label="分布偏移",
                            value=5,
                            minimum=0,
                            maximum=10,
                            step=1,
                            info="控制样本分布偏移的程度。值越大表示偏移越明显。",
gushiqiao's avatar
gushiqiao committed
1247
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1248
1249
1250
1251
1252
1253
1254
                        cfg_scale = gr.Slider(
                            label="CFG缩放因子",
                            minimum=1,
                            maximum=10,
                            step=1,
                            value=default_cfg_scale,
                            info="控制提示词的影响强度。值越高,提示词的影响越大。当值为1时,自动禁用CFG。",
gushiqiao's avatar
gushiqiao committed
1255
1256
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
                    # 根据 cfg_scale 更新 enable_cfg
                    def update_enable_cfg(cfg_scale_val):
                        """根据 cfg_scale 的值自动设置 enable_cfg"""
                        if cfg_scale_val == 1:
                            return gr.update(value=False)
                        else:
                            return gr.update(value=True)

                    # 当模型路径改变时,动态更新 CFG 缩放因子和 enable_cfg
                    def update_cfg_scale(model_type, dit_path, high_noise_path):
                        is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                        if is_distill:
                            new_cfg_scale = 1
                        else:
                            new_cfg_scale = 5
                        new_enable_cfg = False if new_cfg_scale == 1 else True
                        return gr.update(value=new_cfg_scale), gr.update(value=new_enable_cfg)

                    dit_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    high_noise_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    model_type_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )

                    cfg_scale.change(
                        fn=update_enable_cfg,
                        inputs=[cfg_scale],
                        outputs=[enable_cfg],
                    )

gushiqiao's avatar
gushiqiao committed
1297
                    with gr.Row():
Gu Shiqiao's avatar
Gu Shiqiao committed
1298
1299
1300
1301
1302
1303
1304
                        fps = gr.Slider(
                            label="每秒帧数(FPS)",
                            minimum=8,
                            maximum=30,
                            step=1,
                            value=16,
                            info="视频的每秒帧数。较高的FPS会产生更流畅的视频。",
gushiqiao's avatar
gushiqiao committed
1305
                        )
Gu Shiqiao's avatar
Gu Shiqiao committed
1306
1307
1308
1309
1310
1311
1312
                        num_frames = gr.Slider(
                            label="总帧数",
                            minimum=16,
                            maximum=120,
                            step=1,
                            value=81,
                            info="视频中的总帧数。更多帧数会产生更长的视频。",
gushiqiao's avatar
gushiqiao committed
1313
1314
                        )

Gu Shiqiao's avatar
Gu Shiqiao committed
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
                    save_result_path = gr.Textbox(
                        label="输出视频路径",
                        value=generate_unique_filename(output_dir),
                        info="必须包含.mp4扩展名。如果留空或使用默认值,将自动生成唯一文件名。",
                        visible=False,  # 隐藏输出路径,自动生成
                    )

            with gr.Column(scale=4):
                with gr.Accordion("📤 生成的视频", open=True, elem_classes=["output-video"]):
                    output_video = gr.Video(
                        label="",
                        height=600,
                        autoplay=True,
                        show_label=False,
                    )

                    infer_btn = gr.Button("🎬 生成视频", variant="primary", size="lg", elem_classes=["generate-btn"])

            rope_chunk = gr.Checkbox(label="分块旋转位置编码", value=False, visible=False)
            rope_chunk_size = gr.Slider(label="旋转编码块大小", value=100, minimum=100, maximum=10000, step=100, visible=False)
            unload_modules = gr.Checkbox(label="卸载模块", value=False, visible=False)
            clean_cuda_cache = gr.Checkbox(label="清理CUDA内存缓存", value=False, visible=False)
            cpu_offload = gr.Checkbox(label="CPU卸载", value=False, visible=False)
            lazy_load = gr.Checkbox(label="启用延迟加载", value=False, visible=False)
            offload_granularity = gr.Dropdown(label="Dit卸载粒度", choices=["block", "phase"], value="phase", visible=False)
            t5_cpu_offload = gr.Checkbox(label="T5 CPU卸载", value=False, visible=False)
            clip_cpu_offload = gr.Checkbox(label="CLIP CPU卸载", value=False, visible=False)
            vae_cpu_offload = gr.Checkbox(label="VAE CPU卸载", value=False, visible=False)
            use_tiling_vae = gr.Checkbox(label="VAE分块推理", value=False, visible=False)

        resolution.change(
            fn=auto_configure,
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        demo.load(
            fn=lambda res: auto_configure(res),
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        infer_btn.click(
            fn=run_inference,
            inputs=[
                prompt,
                negative_prompt,
                save_result_path,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_cfg,
                cfg_scale,
                fps,
                use_tiling_vae,
                lazy_load,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                model_path_input,
                model_type_input,
                task_type_input,
                dit_path_input,
                high_noise_path_input,
                low_noise_path_input,
                t5_path_input,
                clip_path_input,
                vae_path_input,
                image_path,
            ],
            outputs=output_video,
        )
gushiqiao's avatar
gushiqiao committed
1425

gushiqiao's avatar
gushiqiao committed
1426
    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name, inbrowser=True, allowed_paths=[output_dir])
gushiqiao's avatar
gushiqiao committed
1427
1428
1429


if __name__ == "__main__":
gushiqiao's avatar
gushiqiao committed
1430
1431
1432
1433
    parser = argparse.ArgumentParser(description="轻量级视频生成")
    parser.add_argument("--model_path", type=str, required=True, help="模型文件夹路径")
    parser.add_argument("--server_port", type=int, default=7862, help="服务器端口")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="服务器IP")
gushiqiao's avatar
gushiqiao committed
1434
    parser.add_argument("--output_dir", type=str, default="./outputs", help="输出视频保存目录")
gushiqiao's avatar
gushiqiao committed
1435
1436
    args = parser.parse_args()

Gu Shiqiao's avatar
Gu Shiqiao committed
1437
    global model_path, model_cls, output_dir
gushiqiao's avatar
gushiqiao committed
1438
    model_path = args.model_path
Gu Shiqiao's avatar
Gu Shiqiao committed
1439
    model_cls = "wan2.1"
gushiqiao's avatar
gushiqiao committed
1440
    output_dir = args.output_dir
gushiqiao's avatar
gushiqiao committed
1441

gushiqiao's avatar
gushiqiao committed
1442
    main()