1. 02 Sep, 2021 1 commit
  2. 31 Aug, 2021 1 commit
  3. 26 Aug, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add EfficientNet Architecture in TorchVision (#4293) · 37a9ee5b
      Vasilis Vryniotis authored
      * Adding code skeleton
      
      * Adding MBConvConfig.
      
      * Extend SqueezeExcitation to support custom min_value and activation.
      
      * Implement MBConv.
      
      * Replace stochastic_depth with operator.
      
      * Adding the rest of the EfficientNet implementation
      
      * Update torchvision/models/efficientnet.py
      
      * Replacing 1st activation of SE with SiLU.
      
      * Adding efficientnet_b3.
      
      * Replace mobilenetv3 assets with custom.
      
      * Switch to standard sigmoid and reconfiguring BN.
      
      * Reconfiguration of efficientnet.
      
      * Add repr
      
      * Add weights.
      
      * Update weights.
      
      * Adding B5-B7 weights.
      
      * Update docs and hubconf.
      
      * Fix doc link.
      
      * Fix typo on comment.
      37a9ee5b
  4. 23 Aug, 2021 1 commit
  5. 20 Aug, 2021 1 commit
  6. 01 Jul, 2021 1 commit
  7. 04 Jun, 2021 2 commits
  8. 22 May, 2021 1 commit
  9. 21 May, 2021 1 commit
  10. 18 May, 2021 1 commit
  11. 17 May, 2021 1 commit
  12. 15 May, 2021 1 commit
  13. 12 May, 2021 1 commit
  14. 11 May, 2021 2 commits
    • Aditya Oke's avatar
      Fix io docs and expose `ImageReadMode` in `torchvision.io` (#3812) · 6374cff2
      Aditya Oke authored
      
      
      * Fix io imports and expose methods
      
      * fix fmt
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      6374cff2
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  15. 10 May, 2021 1 commit
  16. 07 May, 2021 1 commit
  17. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  18. 28 Apr, 2021 1 commit
  19. 26 Apr, 2021 1 commit
  20. 21 Apr, 2021 1 commit
  21. 19 Apr, 2021 1 commit
  22. 14 Apr, 2021 1 commit
  23. 09 Apr, 2021 1 commit
    • Prabhat Roy's avatar
      Added KITTI dataset (#3640) · 7da9afee
      Prabhat Roy authored
      
      
      * Added KITTI dataset
      
      * Addressed review comments
      
      * Changed type of target to List[Dict] and corrected the data types of the returned values.
      
      * Updated unit test to rely on ImageDatasetTestCase
      
      * Added kitti to dataset documentation
      
      * Cleaned up test and some minor changes
      
      * Made data_url a string instead of a list
      
      * Removed unnecessary try and print
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      7da9afee
  24. 08 Apr, 2021 1 commit
  25. 22 Mar, 2021 1 commit
  26. 12 Mar, 2021 1 commit
  27. 10 Mar, 2021 1 commit
  28. 09 Mar, 2021 2 commits
  29. 16 Feb, 2021 2 commits
  30. 09 Feb, 2021 2 commits
  31. 08 Feb, 2021 1 commit
  32. 02 Feb, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add Quantizable MobilenetV3 architecture for Classification (#3323) · 8317295c
      Vasilis Vryniotis authored
      * Refactoring mobilenetv3 to make code reusable.
      
      * Adding quantizable MobileNetV3 architecture.
      
      * Fix bug on reference script.
      
      * Moving documentation of quantized models in the right place.
      
      * Update documentation.
      
      * Workaround for loading correct weights of quant model.
      
      * Update weight URL and readme.
      
      * Adding eval.
      8317295c
  33. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd
  34. 26 Jan, 2021 1 commit
  35. 19 Jan, 2021 1 commit