- 28 Sep, 2022 1 commit
-
-
Nicolas Hug authored
* Remove Kinetics400 class * Remove '2007-test' in VOC * Remove some MobileNet layer classes * Remove torchvision/models/segmentation/segmentation.py * Remove some MultiScaleRoIAlign methods * Remove torchvision/transforms/_functional_video.py * Remove torchvision/transforms/_transforms_video.py * Remove resample parameter in transforms * Remove 'range' parameter * Remove 'fill_value' parameter in transforms * Revert to original warning for C++ models - looks like we should still keep them around? * pre-commit * Fix docs * Remove test/test_transforms_video.py * Some fixes * Remove more tests * Revert changes to C++ models * Add back _transforms_video and change warning message * Change back the warning message, and will change the warning message on separate PR Co-authored-by:
YosuaMichael <yosuamichaelm@gmail.com> Co-authored-by:
Yosua Michael Maranatha <yosuamichael@fb.com>
-
- 01 Aug, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Model registration mechanism. * Add overwrite options to the dataset prototype registration mechanism. * Adding example models. * Fix module filtering * Fix linter * Fix docs * Make name optional if same as model builder * Apply updates from code-review. * fix minor bug * Adding getter for model weight enum * Support both strings and callables on get_model_weight. * linter fixes * Fixing mypy. * Renaming `get_model_weight` to `get_model_weights` * Registering all classification models. * Registering all video models. * Registering all detection models. * Registering all optical flow models. * Fixing mypy. * Registering all segmentation models. * Registering all quantization models. * Fixing linter * Registering all prototype depth perception models. * Adding tests and updating existing tests. * Fix linters * Fix tests. * Add beta annotation on docs. * Fix tests. * Apply changes from code-review. * Adding documentation. * Fix docs.
-
- 22 Jul, 2022 1 commit
-
-
Philip Meier authored
* upgrade usort to * Also update black * Actually use 1.0.2 * Apply pre-commit Co-authored-by:Nicolas Hug <contact@nicolas-hug.com>
-
- 18 May, 2022 1 commit
-
-
Nicolas Hug authored
* Classif models * Detection * Segmentation * quantization * Video * optical flow * tests * Fix docs * Fix Video dataset * Consistency for RAFT dataset names * use ImageNet-1K * Use COCO-val2017-VOC-labels for segmentation * formatting
-
- 17 May, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Improving the auto-gen doc. * Adding details for AlexNet, ConvNext, DenseNet, EfficientNets, GoogLeNet and InceptionV3. * Fixing location of `_docs` * Adding docs in the remaining classification models. * Fix linter
-
- 12 May, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Reinstate and deprecate `model_urls` and `quant_model_urls` * Apply suggestions from code review Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Move todo location * Add alexnet * Add densenet * Add efficientnet * Add googlenet. * Add inception. * Add mobilenetv3 * Add regnet * Add resnet * Add shufflenetv2 * Fix linter * Add squeezenet * Add vgg * Add vit * Add quantized googlenet * Add quantized inceptionv3 * Add quantized mobilenet_v3 * Add quantized resnet * Add quantized shufflenetv2 * Fix incorrect imports * Add faster_rcnn * Add fcos * Add keypoint rcnn * Add mask rcnn * Add retinanet * Add ssd * Add ssdlite * Add deeplabv3 * Add fcn * Add lraspp. * Add video resnet * Removing weights for shufflenetv2_x1.5 and shufflenetv2_x2.0 * Update the comments Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com>
-
- 27 Apr, 2022 1 commit
-
-
F-G Fernandez authored
* docs: Added entry for MobileNet V2 in new doc * docs: Updated MobileNetV2 docstring * docs: Fixed docstring Co-authored-by:FG Fernandez <26927750+frgfm@users.noreply.github.com>
-
- 22 Apr, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Restructuring metrics meta-data for detection, segmentation and optical flow. * Renaming acc to pixel_acc for segmentation * Restructure video meta-data. * Restructure classification and quantization meta-data. * Fix tests. * Fix documentation
-
- 21 Apr, 2022 2 commits
-
-
Vasilis Vryniotis authored
* Removing `task`, `architecture` and `quantization` * Fix mypy * Remove size field * Remove unused import. * Fix mypy * Remove size from schema list. * update todo * Simplify with assert * Adding min_size to all models. * Update RAFT min size to 128
-
YosuaMichael authored
* Remove publication_year and interpolation meta * Add type to _COMMON_META and _COMMON_SWAG_META to prevent error from mypy check * Remove test to check interpolation and publication_year meta Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 22 Mar, 2022 1 commit
-
-
Vasilis Vryniotis authored
* Moving basefiles outside of prototype and porting Alexnet, ConvNext, Densenet and EfficientNet. * Porting googlenet * Porting inception * Porting mnasnet * Porting mobilenetv2 * Porting mobilenetv3 * Porting regnet * Porting resnet * Porting shufflenetv2 * Porting squeezenet * Porting vgg * Porting vit * Fix docstrings * Fixing imports * Adding missing import * Fix mobilenet imports * Fix tests * Fix prototype tests * Exclude get_weight from models on test * Fix init files * Porting googlenet * Porting inception * porting mobilenetv2 * porting mobilenetv3 * porting resnet * porting shufflenetv2 * Fix test and linter * Fixing docs. * Porting Detection models (#5617) * fix inits * fix docs * Port faster_rcnn * Port fcos * Port keypoint_rcnn * Port mask_rcnn * Port retinanet * Port ssd * Port ssdlite * Fix linter * Fixing tests * Fixing tests * Fixing vgg test * Porting Optical Flow, Segmentation, Video models (#5619) * Porting raft * Porting video resnet * Porting deeplabv3 * Porting fcn and lraspp * Fixing the tests and linter * Porting docs, examples, tutorials and galleries (#5620) * Fix examples, tutorials and gallery * Update gallery/plot_optical_flow.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Fix import * Revert hardcoded normalization * fix uncommitted changes * Fix bug * Fix more bugs * Making resize optional for segmentation * Fixing preset * Fix mypy * Fixing documentation strings * Fix flake8 * minor refactoring Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Resolve conflict * Porting model tests (#5622) * Porting tests * Remove unnecessary variable * Fix linter * Move prototype to extended tests * Fix download models job * Update CI on Multiweight branch to use the new weight download approach (#5628) * port Pad to prototype transforms (#5621) * port Pad to prototype transforms * use literal * Bump up LibTorchvision version number for Podspec to release Cocoapods (#5624) Co-authored-by:
Anton Thomma <anton@pri.co.nz> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> * pre-download model weights in CI docs build (#5625) * pre-download model weights in CI docs build * move changes into template * change docs image * Regenerated config.yml Co-authored-by:
Philip Meier <github.pmeier@posteo.de> Co-authored-by:
Anton Thomma <11010310+thommaa@users.noreply.github.com> Co-authored-by:
Anton Thomma <anton@pri.co.nz> * Porting reference scripts and updating presets (#5629) * Making _preset.py classes * Remove support of targets on presets. * Rewriting the video preset * Adding tests to check that the bundled transforms are JIT scriptable * Rename all presets from *Eval to *Inference * Minor refactoring * Remove --prototype and --pretrained from reference scripts * remove pretained_backbone refs * Corrections and simplifications * Fixing bug * Fixing linter * Fix flake8 * restore documentation example * minor fixes * fix optical flow missing param * Fixing commands * Adding weights_backbone support in detection and segmentation * Updating the commands for InceptionV3 * Setting `weights_backbone` to its fully BC value (#5653) * Replace default `weights_backbone=None` with its BC values. * Fixing tests * Fix linter * Update docs. * Update preprocessing on reference scripts. * Change qat/ptq to their full values. * Refactoring preprocessing * Fix video preset * No initialization on VGG if pretrained * Fix warning messages for backbone utils. * Adding star to all preset constructors. * Fix mypy. Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> Co-authored-by:
Philip Meier <github.pmeier@posteo.de> Co-authored-by:
Anton Thomma <11010310+thommaa@users.noreply.github.com> Co-authored-by:
Anton Thomma <anton@pri.co.nz>
-
- 15 Mar, 2022 1 commit
-
-
Joao Gomes authored
* replace most asserts with exceptions * fix formating issues * fix linting and remove more asserts * fix regresion * fix regresion * fix bug * apply ufmt * apply ufmt * fix tests * fix format * fix None check * fix detection models tests * non scriptable any * add more checks for None values * fix retinanet test * fix retinanet test * Update references/classification/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update references/classification/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update references/optical_flow/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update references/optical_flow/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update references/optical_flow/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * make value checks more pythonic: * Update references/optical_flow/transforms.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * make value checks more pythonic * make more checks pythonic * fix bug * appy ufmt * fix tracing issues * fib typos * fix lint * remove unecessary f-strings * fix bug * Update torchvision/datasets/mnist.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/datasets/mnist.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/ops/boxes.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/ops/poolers.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/utils.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * address PR comments * Update torchvision/io/_video_opt.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/models/detection/generalized_rcnn.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/models/feature_extraction.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * Update torchvision/models/optical_flow/raft.py Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com> * address PR comments * addressing further pr comments * fix bug * remove unecessary else * apply ufmt * last pr comment * replace RuntimeErrors Co-authored-by:
Nicolas Hug <contact@nicolas-hug.com>
-
- 25 Feb, 2022 1 commit
-
-
Aditya Oke authored
* Add ops.conv3d * Refactor for conv2d and 3d * Refactor * Fix bug * Addres review * Fix bug * nit fix * Fix flake * Final fix * remove documentation * fix linter * Update all the implementations to use new Conv * Small doc fix Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Joao Gomes <jdsgomes@fb.com>
-
- 08 Feb, 2022 1 commit
-
-
Philip Meier authored
* properly deprecate legacy implementation * cleanup * use warning over deprecation directive * remove patch version * fix link in Kinetics docstring * Some more * fix affine functional tests Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 16 Dec, 2021 1 commit
-
-
Kai Zhang authored
* log API v3 * make torchscript happy * make torchscript happy * add missing logs to constructor * log ops C++ API as well * fix type hint * check function with isinstance Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 09 Dec, 2021 1 commit
-
-
Kai Zhang authored
* revamp log api usage method
-
- 28 Oct, 2021 1 commit
-
-
Jirka Borovec authored
Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 25 Oct, 2021 1 commit
-
-
Francisco Massa authored
Summary: We would like to track the internal usage of TorchVision components. We're tracking [datasets usage](https://fburl.com/daiquery/dqpmemn3 ) now. This diff expand the tracking to all models. Reviewed By: fmassa Differential Revision: D31441632 fbshipit-source-id: e26072e582ac9f832c2056307ebf0eccf2ed6c9c Co-authored-by:
Kai Zhang <kaizh@fb.com>
-
- 13 Oct, 2021 1 commit
-
-
Muhammed Abdullah authored
* Added Dropout parameter of Models * Added argument description for dropout in MobileNet v2 and v3 Updated quantization/googlenet.py as per the changes in constructor in googlenet * Moved new dropout parameter n the end * Updated googlenet.py Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 04 Oct, 2021 2 commits
-
-
Nicolas Hug authored
-
Philip Meier authored
* add ufmt as code formatter * cleanup * quote ufmt requirement * split imports into more groups * regenerate circleci config * fix CI * clarify local testing utils section * use ufmt pre-commit hook * split relative imports into local category * Revert "split relative imports into local category" This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51. * pin black and usort dependencies * fix local test utils detection * fix ufmt rev * add reference utils to local category * fix usort config * remove custom categories sorting * Run pre-commit without fixing flake8 * got a double import in merge Co-authored-by:Nicolas Hug <nicolashug@fb.com>
-
- 30 Sep, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Moving _make_divisible to utils. * Replace the old ConvBNReLU and ConvBNActivation layers * Fix minor bug. * Moving SE layer to ops. * Adding deprecation warnings on old layers. * Apply changes to regnets.
-
- 22 Jun, 2021 1 commit
-
-
Nicolas Hug authored
-
- 28 Apr, 2021 1 commit
-
-
Zhiqiang Wang authored
* Keep consistency of ConvBNActivation * Simplify using the Python3 idiom Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com> Co-authored-by:
Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 26 Feb, 2021 1 commit
-
-
Jithendra Paruchuri authored
Current implementation is generating bad graph after onnx conversion. So replacing with flatten like in mobilenetv3 code. Co-authored-by:Vasilis Vryniotis <datumbox@users.noreply.github.com>
-
- 27 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Making _segm_resnet() generic and reusable. * Adding fcn and deeplabv3 directly on mobilenetv3 backbone. * Adding tests for segmentation models. * Rename is_strided with _is_cn. * Add dilation support on MobileNetV3 for Segmentation. * Add Lite R-ASPP with MobileNetV3 backbone. * Add pretrained model weights. * Removing model fcn_mobilenet_v3_large. * Adding docs and imports. * Fixing typo and readme.
-
- 22 Jan, 2021 1 commit
-
-
Nicolas Hug authored
-
- 14 Jan, 2021 1 commit
-
-
Vasilis Vryniotis authored
* Add MobileNetV3 Architecture in TorchVision (#3182) * Adding implementation of network architecture * Adding rmsprop support on the train.py * Adding auto-augment and random-erase in the training scripts. * Adding support for reduced tail on MobileNetV3. * Tagging blocks with comments. * Adding documentation, pre-trained model URL and a minor refactoring. * Handling better untrained supported models.
-
- 17 Dec, 2020 1 commit
-
-
Vasilis Vryniotis authored
* Moving mobilenet.py to mobilenetv2.py * Adding mobilenet.py for BC. * Extending ConvBNReLU for reuse. * Reduce import scope on mobilenet to only the public and versioned classes and methods.
-
- 23 Oct, 2020 1 commit
-
-
F-G Fernandez authored
* style: Added annotation typing for mmobilenet * fix: Fixed type hinting of adaptive pooling * refactor: Removed un-necessary import * fix: Fixed constructor typing * fix: Fixed list typing
-
- 29 May, 2020 1 commit
-
-
Michael Kösel authored
* Add norm_layer to MobileNetV2 * Add simple test case * Small fix
-
- 13 Feb, 2020 1 commit
-
-
talcs authored
* replaced mean on dimensions 2,3 by adaptive_avg_pooling2d with destination of 1, to remove hardcoded dimension ordering * replaced reshape command by torch.squeeze after global_avg_pool2d, which is cleaner * reshape rather than squeeze for BS=1 * remove import torch
-
- 30 Nov, 2019 1 commit
-
-
driazati authored
* Add tests for results in script vs eager mode This copies some logic from `test_jit.py` to check that a TorchScript'ed model's outputs are the same as outputs from the model in eager mode. To support differences in TorchScript / eager mode outputs, an `unwrapper` function can be provided per-model. * Fix inception, use PYTORCH_TEST_WITH_SLOW * Update * Remove assertNestedTensorObjectsEqual * Add PYTORCH_TEST_WITH_SLOW to CircleCI config * Add MaskRCNN unwrapper * fix prec args * Remove CI changes * update * Update * remove expect changes * Fix tolerance bug * Fix breakages * Fix quantized resnet * Fix merge errors and simplify code * DeepLabV3 has been fixed * Temporarily disable jit compilation
-
- 26 Oct, 2019 1 commit
-
-
raghuramank100 authored
* add quantized models * Modify mobilenet.py documentation and clean up comments Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Move fuse_model method to QuantizableInvertedResidual and clean up args documentation Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Restore relu settings to default in resnet.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix missing return in forward Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix missing return in forwards Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Change pretrained -> pretrained_float_models Replace InvertedResidual with block Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update tests to follow similar structure to test_models.py, allowing for modular testing Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Replace forward method with simple function assignment Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix error in arguments for resnet18 Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * pretrained_float_model argument missing for mobilenet Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * reference script for quantization aware training and post training quantization * reference script for quantization aware training and post training quantization * set pretrained_float_model as False and explicitly provide float model Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Address review comments: 1. Replace forward with _forward 2. Use pretrained models in reference train/eval script 3. Modify test to skip if fbgemm is not supported Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint errors. Use _forward for common code between float and quantized models Clean up linting for reference train scripts Test over all quantizable models Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update default values for args in quantization/train.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Update models to conform to new API with quantize argument Remove apex in training script, add post training quant as an option Add support for separate calibration data set. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix minor errors in train_quantization.py Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Remove duplicate file * Bugfix * Minor improvements on the models * Expose print_freq to evaluate * Minor improvements on train_quantization.py * Ensure that quantized models are created and run on the specified backends Fix errors in test only mode Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Add model urls * Fix errors in quantized model tests. Speedup creation of random quantized model by removing histogram observers Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Move setting qengine prior to convert. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint error Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Add readme.md Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Readme.md Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags: * Fix lint
-
- 02 Jul, 2019 1 commit
-
-
yaysummeriscoming authored
* Fixed width multiplier Layer channels are now rounded to a multiple of 8, as per the official tensorflow implementation. I found this fix when looking through: https://github.com/d-li14/mobilenetv2.pytorch * Channel multiple now a user configurable option The official tensorflow slim mobilenet v2 implementation rounds the number of channels in each layer to a multiple of 8. This is now user configurable - 1 turns off rounding * Fixed whitespace error Fixed error: ./torchvision/models/mobilenet.py:152:1: W293 blank line contains whitespace
-
- 07 Jun, 2019 1 commit
-
-
Matthew Yeung authored
* allow user to define residual settings * 4spaces * linting errors * backward compatible, and added test
-
- 19 May, 2019 1 commit
-
-
Francisco Massa authored
Also move weights from ShuffleNet to PyTorch bucket. Additionally, rename shufflenet to make it consistent with the other models
-
- 02 Apr, 2019 1 commit
-
-
Surgan Jandial authored
Making references/classification/train.py and references/classification/utils.py compatible with python2 (#831) * linter fixes * linter fixes
-
- 28 Mar, 2019 1 commit
-
-
Francisco Massa authored
* Add MobileNet V2 * Remove redundant functions and make tests pass * Simplify a bit the implementation * Reuse ConvBNReLU more often * Remove input_size and minor changes * Py2 fix
-