Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
d716c426
Unverified
Commit
d716c426
authored
Dec 09, 2021
by
Kai Zhang
Committed by
GitHub
Dec 09, 2021
Browse files
revamp log api usage method (#5072)
* revamp log api usage method
parent
e0c5cc41
Changes
35
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
20 additions
and
20 deletions
+20
-20
torchvision/datasets/vision.py
torchvision/datasets/vision.py
+1
-1
torchvision/models/alexnet.py
torchvision/models/alexnet.py
+1
-1
torchvision/models/densenet.py
torchvision/models/densenet.py
+1
-1
torchvision/models/detection/generalized_rcnn.py
torchvision/models/detection/generalized_rcnn.py
+1
-1
torchvision/models/detection/retinanet.py
torchvision/models/detection/retinanet.py
+1
-1
torchvision/models/detection/ssd.py
torchvision/models/detection/ssd.py
+1
-1
torchvision/models/detection/ssdlite.py
torchvision/models/detection/ssdlite.py
+1
-1
torchvision/models/efficientnet.py
torchvision/models/efficientnet.py
+1
-1
torchvision/models/googlenet.py
torchvision/models/googlenet.py
+1
-1
torchvision/models/inception.py
torchvision/models/inception.py
+1
-1
torchvision/models/mnasnet.py
torchvision/models/mnasnet.py
+1
-1
torchvision/models/mobilenetv2.py
torchvision/models/mobilenetv2.py
+1
-1
torchvision/models/mobilenetv3.py
torchvision/models/mobilenetv3.py
+1
-1
torchvision/models/optical_flow/raft.py
torchvision/models/optical_flow/raft.py
+1
-1
torchvision/models/regnet.py
torchvision/models/regnet.py
+1
-1
torchvision/models/resnet.py
torchvision/models/resnet.py
+1
-1
torchvision/models/segmentation/_utils.py
torchvision/models/segmentation/_utils.py
+1
-1
torchvision/models/segmentation/lraspp.py
torchvision/models/segmentation/lraspp.py
+1
-1
torchvision/models/shufflenetv2.py
torchvision/models/shufflenetv2.py
+1
-1
torchvision/models/squeezenet.py
torchvision/models/squeezenet.py
+1
-1
No files found.
torchvision/datasets/vision.py
View file @
d716c426
...
@@ -35,7 +35,7 @@ class VisionDataset(data.Dataset):
...
@@ -35,7 +35,7 @@ class VisionDataset(data.Dataset):
transform
:
Optional
[
Callable
]
=
None
,
transform
:
Optional
[
Callable
]
=
None
,
target_transform
:
Optional
[
Callable
]
=
None
,
target_transform
:
Optional
[
Callable
]
=
None
,
)
->
None
:
)
->
None
:
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"datasets"
,
self
.
__class__
.
__name__
)
if
isinstance
(
root
,
torch
.
_six
.
string_classes
):
if
isinstance
(
root
,
torch
.
_six
.
string_classes
):
root
=
os
.
path
.
expanduser
(
root
)
root
=
os
.
path
.
expanduser
(
root
)
self
.
root
=
root
self
.
root
=
root
...
...
torchvision/models/alexnet.py
View file @
d716c426
...
@@ -18,7 +18,7 @@ model_urls = {
...
@@ -18,7 +18,7 @@ model_urls = {
class
AlexNet
(
nn
.
Module
):
class
AlexNet
(
nn
.
Module
):
def
__init__
(
self
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
def
__init__
(
self
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
features
=
nn
.
Sequential
(
self
.
features
=
nn
.
Sequential
(
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
2
),
nn
.
Conv2d
(
3
,
64
,
kernel_size
=
11
,
stride
=
4
,
padding
=
2
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
ReLU
(
inplace
=
True
),
...
...
torchvision/models/densenet.py
View file @
d716c426
...
@@ -163,7 +163,7 @@ class DenseNet(nn.Module):
...
@@ -163,7 +163,7 @@ class DenseNet(nn.Module):
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
# First convolution
# First convolution
self
.
features
=
nn
.
Sequential
(
self
.
features
=
nn
.
Sequential
(
...
...
torchvision/models/detection/generalized_rcnn.py
View file @
d716c426
...
@@ -27,7 +27,7 @@ class GeneralizedRCNN(nn.Module):
...
@@ -27,7 +27,7 @@ class GeneralizedRCNN(nn.Module):
def
__init__
(
self
,
backbone
:
nn
.
Module
,
rpn
:
nn
.
Module
,
roi_heads
:
nn
.
Module
,
transform
:
nn
.
Module
)
->
None
:
def
__init__
(
self
,
backbone
:
nn
.
Module
,
rpn
:
nn
.
Module
,
roi_heads
:
nn
.
Module
,
transform
:
nn
.
Module
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
transform
=
transform
self
.
transform
=
transform
self
.
backbone
=
backbone
self
.
backbone
=
backbone
self
.
rpn
=
rpn
self
.
rpn
=
rpn
...
...
torchvision/models/detection/retinanet.py
View file @
d716c426
...
@@ -337,7 +337,7 @@ class RetinaNet(nn.Module):
...
@@ -337,7 +337,7 @@ class RetinaNet(nn.Module):
topk_candidates
=
1000
,
topk_candidates
=
1000
,
):
):
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
hasattr
(
backbone
,
"out_channels"
):
if
not
hasattr
(
backbone
,
"out_channels"
):
raise
ValueError
(
raise
ValueError
(
...
...
torchvision/models/detection/ssd.py
View file @
d716c426
...
@@ -182,7 +182,7 @@ class SSD(nn.Module):
...
@@ -182,7 +182,7 @@ class SSD(nn.Module):
positive_fraction
:
float
=
0.25
,
positive_fraction
:
float
=
0.25
,
):
):
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
self
.
backbone
=
backbone
...
...
torchvision/models/detection/ssdlite.py
View file @
d716c426
...
@@ -120,7 +120,7 @@ class SSDLiteFeatureExtractorMobileNet(nn.Module):
...
@@ -120,7 +120,7 @@ class SSDLiteFeatureExtractorMobileNet(nn.Module):
min_depth
:
int
=
16
,
min_depth
:
int
=
16
,
):
):
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
assert
not
backbone
[
c4_pos
].
use_res_connect
assert
not
backbone
[
c4_pos
].
use_res_connect
self
.
features
=
nn
.
Sequential
(
self
.
features
=
nn
.
Sequential
(
...
...
torchvision/models/efficientnet.py
View file @
d716c426
...
@@ -170,7 +170,7 @@ class EfficientNet(nn.Module):
...
@@ -170,7 +170,7 @@ class EfficientNet(nn.Module):
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
"""
"""
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
inverted_residual_setting
:
if
not
inverted_residual_setting
:
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
...
...
torchvision/models/googlenet.py
View file @
d716c426
...
@@ -39,7 +39,7 @@ class GoogLeNet(nn.Module):
...
@@ -39,7 +39,7 @@ class GoogLeNet(nn.Module):
dropout_aux
:
float
=
0.7
,
dropout_aux
:
float
=
0.7
,
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
blocks
is
None
:
if
blocks
is
None
:
blocks
=
[
BasicConv2d
,
Inception
,
InceptionAux
]
blocks
=
[
BasicConv2d
,
Inception
,
InceptionAux
]
if
init_weights
is
None
:
if
init_weights
is
None
:
...
...
torchvision/models/inception.py
View file @
d716c426
...
@@ -37,7 +37,7 @@ class Inception3(nn.Module):
...
@@ -37,7 +37,7 @@ class Inception3(nn.Module):
dropout
:
float
=
0.5
,
dropout
:
float
=
0.5
,
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
inception_blocks
is
None
:
if
inception_blocks
is
None
:
inception_blocks
=
[
BasicConv2d
,
InceptionA
,
InceptionB
,
InceptionC
,
InceptionD
,
InceptionE
,
InceptionAux
]
inception_blocks
=
[
BasicConv2d
,
InceptionA
,
InceptionB
,
InceptionC
,
InceptionD
,
InceptionE
,
InceptionAux
]
if
init_weights
is
None
:
if
init_weights
is
None
:
...
...
torchvision/models/mnasnet.py
View file @
d716c426
...
@@ -98,7 +98,7 @@ class MNASNet(torch.nn.Module):
...
@@ -98,7 +98,7 @@ class MNASNet(torch.nn.Module):
def
__init__
(
self
,
alpha
:
float
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.2
)
->
None
:
def
__init__
(
self
,
alpha
:
float
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.2
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
assert
alpha
>
0.0
assert
alpha
>
0.0
self
.
alpha
=
alpha
self
.
alpha
=
alpha
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
...
...
torchvision/models/mobilenetv2.py
View file @
d716c426
...
@@ -111,7 +111,7 @@ class MobileNetV2(nn.Module):
...
@@ -111,7 +111,7 @@ class MobileNetV2(nn.Module):
"""
"""
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
block
is
None
:
if
block
is
None
:
block
=
InvertedResidual
block
=
InvertedResidual
...
...
torchvision/models/mobilenetv3.py
View file @
d716c426
...
@@ -151,7 +151,7 @@ class MobileNetV3(nn.Module):
...
@@ -151,7 +151,7 @@ class MobileNetV3(nn.Module):
dropout (float): The droupout probability
dropout (float): The droupout probability
"""
"""
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
not
inverted_residual_setting
:
if
not
inverted_residual_setting
:
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
raise
ValueError
(
"The inverted_residual_setting should not be empty"
)
...
...
torchvision/models/optical_flow/raft.py
View file @
d716c426
...
@@ -440,7 +440,7 @@ class RAFT(nn.Module):
...
@@ -440,7 +440,7 @@ class RAFT(nn.Module):
If ``None`` (default), the flow is upsampled using interpolation.
If ``None`` (default), the flow is upsampled using interpolation.
"""
"""
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
feature_encoder
=
feature_encoder
self
.
feature_encoder
=
feature_encoder
self
.
context_encoder
=
context_encoder
self
.
context_encoder
=
context_encoder
...
...
torchvision/models/regnet.py
View file @
d716c426
...
@@ -310,7 +310,7 @@ class RegNet(nn.Module):
...
@@ -310,7 +310,7 @@ class RegNet(nn.Module):
activation
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
activation
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
stem_type
is
None
:
if
stem_type
is
None
:
stem_type
=
SimpleStemIN
stem_type
=
SimpleStemIN
...
...
torchvision/models/resnet.py
View file @
d716c426
...
@@ -174,7 +174,7 @@ class ResNet(nn.Module):
...
@@ -174,7 +174,7 @@ class ResNet(nn.Module):
norm_layer
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
norm_layer
:
Optional
[
Callable
[...,
nn
.
Module
]]
=
None
,
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
norm_layer
is
None
:
if
norm_layer
is
None
:
norm_layer
=
nn
.
BatchNorm2d
norm_layer
=
nn
.
BatchNorm2d
self
.
_norm_layer
=
norm_layer
self
.
_norm_layer
=
norm_layer
...
...
torchvision/models/segmentation/_utils.py
View file @
d716c426
...
@@ -13,7 +13,7 @@ class _SimpleSegmentationModel(nn.Module):
...
@@ -13,7 +13,7 @@ class _SimpleSegmentationModel(nn.Module):
def
__init__
(
self
,
backbone
:
nn
.
Module
,
classifier
:
nn
.
Module
,
aux_classifier
:
Optional
[
nn
.
Module
]
=
None
)
->
None
:
def
__init__
(
self
,
backbone
:
nn
.
Module
,
classifier
:
nn
.
Module
,
aux_classifier
:
Optional
[
nn
.
Module
]
=
None
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
self
.
backbone
=
backbone
self
.
classifier
=
classifier
self
.
classifier
=
classifier
self
.
aux_classifier
=
aux_classifier
self
.
aux_classifier
=
aux_classifier
...
...
torchvision/models/segmentation/lraspp.py
View file @
d716c426
...
@@ -38,7 +38,7 @@ class LRASPP(nn.Module):
...
@@ -38,7 +38,7 @@ class LRASPP(nn.Module):
self
,
backbone
:
nn
.
Module
,
low_channels
:
int
,
high_channels
:
int
,
num_classes
:
int
,
inter_channels
:
int
=
128
self
,
backbone
:
nn
.
Module
,
low_channels
:
int
,
high_channels
:
int
,
num_classes
:
int
,
inter_channels
:
int
=
128
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
backbone
=
backbone
self
.
backbone
=
backbone
self
.
classifier
=
LRASPPHead
(
low_channels
,
high_channels
,
num_classes
,
inter_channels
)
self
.
classifier
=
LRASPPHead
(
low_channels
,
high_channels
,
num_classes
,
inter_channels
)
...
...
torchvision/models/shufflenetv2.py
View file @
d716c426
...
@@ -100,7 +100,7 @@ class ShuffleNetV2(nn.Module):
...
@@ -100,7 +100,7 @@ class ShuffleNetV2(nn.Module):
inverted_residual
:
Callable
[...,
nn
.
Module
]
=
InvertedResidual
,
inverted_residual
:
Callable
[...,
nn
.
Module
]
=
InvertedResidual
,
)
->
None
:
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
if
len
(
stages_repeats
)
!=
3
:
if
len
(
stages_repeats
)
!=
3
:
raise
ValueError
(
"expected stages_repeats as list of 3 positive ints"
)
raise
ValueError
(
"expected stages_repeats as list of 3 positive ints"
)
...
...
torchvision/models/squeezenet.py
View file @
d716c426
...
@@ -36,7 +36,7 @@ class Fire(nn.Module):
...
@@ -36,7 +36,7 @@ class Fire(nn.Module):
class
SqueezeNet
(
nn
.
Module
):
class
SqueezeNet
(
nn
.
Module
):
def
__init__
(
self
,
version
:
str
=
"1_0"
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
def
__init__
(
self
,
version
:
str
=
"1_0"
,
num_classes
:
int
=
1000
,
dropout
:
float
=
0.5
)
->
None
:
super
().
__init__
()
super
().
__init__
()
_log_api_usage_once
(
self
)
_log_api_usage_once
(
"models"
,
self
.
__class__
.
__name__
)
self
.
num_classes
=
num_classes
self
.
num_classes
=
num_classes
if
version
==
"1_0"
:
if
version
==
"1_0"
:
self
.
features
=
nn
.
Sequential
(
self
.
features
=
nn
.
Sequential
(
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment