1. 17 May, 2021 1 commit
  2. 15 May, 2021 1 commit
  3. 12 May, 2021 1 commit
  4. 11 May, 2021 2 commits
    • Aditya Oke's avatar
      Fix io docs and expose `ImageReadMode` in `torchvision.io` (#3812) · 6374cff2
      Aditya Oke authored
      
      
      * Fix io imports and expose methods
      
      * fix fmt
      Co-authored-by: default avatarVasilis Vryniotis <datumbox@users.noreply.github.com>
      6374cff2
    • Vasilis Vryniotis's avatar
      Add SSDlite architecture with MobileNetV3 backbones (#3757) · 43d77206
      Vasilis Vryniotis authored
      * Partial implementation of SSDlite.
      
      * Add normal init and BN hyperparams.
      
      * Refactor to keep JIT happy
      
      * Completed SSDlite.
      
      * Fix lint
      
      * Update todos
      
      * Add expected file in repo.
      
      * Use C4 expansion instead of C4 output.
      
      * Change scales formula for Default Boxes.
      
      * Add cosine annealing on trainer.
      
      * Make T_max count epochs.
      
      * Fix test and handle corner-case.
      
      * Add support of support width_mult
      
      * Add ssdlite presets.
      
      * Change ReLU6, [-1,1] rescaling, backbone init & no pretraining.
      
      * Use _reduced_tail=True.
      
      * Add sync BN support.
      
      * Adding the best config along with its weights and documentation.
      
      * Make mean/std configurable.
      
      * Fix not implemented for half exception
      43d77206
  5. 10 May, 2021 1 commit
  6. 07 May, 2021 1 commit
  7. 30 Apr, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add SSD architecture with VGG16 backbone (#3403) · 730c5e1e
      Vasilis Vryniotis authored
      * Early skeleton of API.
      
      * Adding MultiFeatureMap and vgg16 backbone.
      
      * Making vgg16 backbone same as paper.
      
      * Making code generic to support all vggs.
      
      * Moving vgg's extra layers a separate class + L2 scaling.
      
      * Adding header vgg layers.
      
      * Fix maxpool patching.
      
      * Refactoring code to allow for support of different backbones & sizes:
      - Skeleton for Default Boxes generator class
      - Dynamic estimation of configuration when possible
      - Addition of types
      
      * Complete the implementation of DefaultBox generator.
      
      * Replace randn with empty.
      
      * Minor refactoring
      
      * Making clamping between 0 and 1 optional.
      
      * Change xywh to xyxy encoding.
      
      * Adding parameters and reusing objects in constructor.
      
      * Temporarily inherit from Retina to avoid dup code.
      
      * Implement forward methods + temp workarounds to inherit from retina.
      
      * Inherit more methods from retinanet.
      
      * Fix type error.
      
      * Add Regression loss.
      
      * Fixing JIT issues.
      
      * Change JIT workaround to minimize new code.
      
      * Fixing initialization bug.
      
      * Add classification loss.
      
      * Update todos.
      
      * Add weight loading support.
      
      * Support SSD512.
      
      * Change kernel_size to get output size 1x1
      
      * Add xavier init and refactoring.
      
      * Adding unit-tests and fixing JIT issues.
      
      * Add a test for dbox generator.
      
      * Remove unnecessary import.
      
      * Workaround on GeneralizedRCNNTransform to support fixed size input.
      
      * Remove unnecessary random calls from the test.
      
      * Remove more rand calls from the test.
      
      * change mapping and handling of empty labels
      
      * Fix JIT warnings.
      
      * Speed up loss.
      
      * Convert 0-1 dboxes to original size.
      
      * Fix warning.
      
      * Fix tests.
      
      * Update comments.
      
      * Fixing minor bugs.
      
      * Introduce a custom DBoxMatcher.
      
      * Minor refactoring
      
      * Move extra layer definition inside feature extractor.
      
      * handle no bias on init.
      
      * Remove fixed image size limitation
      
      * Change initialization values for bias of classification head.
      
      * Refactoring and update test file.
      
      * Adding ResNet backbone.
      
      * Minor refactoring.
      
      * Remove inheritance of retina and general refactoring.
      
      * SSD should fix the input size.
      
      * Fixing messages and comments.
      
      * Silently ignoring exception if test-only.
      
      * Update comments.
      
      * Update regression loss.
      
      * Restore Xavier init everywhere, update the negative sampling method, change the clipping approach.
      
      * Fixing tests.
      
      * Refactor to move the losses from the Head to the SSD.
      
      * Removing resnet50 ssd version.
      
      * Adding support for best performing backbone and its config.
      
      * Refactor and clean up the API.
      
      * Fix lint
      
      * Update todos and comments.
      
      * Adding RandomHorizontalFlip and RandomIoUCrop transforms.
      
      * Adding necessary checks to our tranforms.
      
      * Adding RandomZoomOut.
      
      * Adding RandomPhotometricDistort.
      
      * Moving Detection transforms to references.
      
      * Update presets
      
      * fix lint
      
      * leave compose and object
      
      * Adding scaling for completeness.
      
      * Adding params in the repr
      
      * Remove unnecessary import.
      
      * minor refactoring
      
      * Remove unnecessary call.
      
      * Give better names to DBox* classes
      
      * Port num_anchors estimation in generator
      
      * Remove rescaling and fix presets
      
      * Add the ability to pass a custom head and refactoring.
      
      * fix lint
      
      * Fix unit-test
      
      * Update todos.
      
      * Change mean values.
      
      * Change the default parameter of SSD to train the full VGG16 and remove the catch of exception for eval only.
      
      * Adding documentation
      
      * Adding weights and updating readmes.
      
      * Update the model weights with a more performing model.
      
      * Adding doc for head.
      
      * Restore import.
      730c5e1e
  8. 28 Apr, 2021 1 commit
  9. 26 Apr, 2021 1 commit
  10. 21 Apr, 2021 1 commit
  11. 19 Apr, 2021 1 commit
  12. 14 Apr, 2021 1 commit
  13. 09 Apr, 2021 1 commit
    • Prabhat Roy's avatar
      Added KITTI dataset (#3640) · 7da9afee
      Prabhat Roy authored
      
      
      * Added KITTI dataset
      
      * Addressed review comments
      
      * Changed type of target to List[Dict] and corrected the data types of the returned values.
      
      * Updated unit test to rely on ImageDatasetTestCase
      
      * Added kitti to dataset documentation
      
      * Cleaned up test and some minor changes
      
      * Made data_url a string instead of a list
      
      * Removed unnecessary try and print
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      7da9afee
  14. 08 Apr, 2021 1 commit
  15. 22 Mar, 2021 1 commit
  16. 12 Mar, 2021 1 commit
  17. 10 Mar, 2021 1 commit
  18. 09 Mar, 2021 2 commits
  19. 16 Feb, 2021 2 commits
  20. 09 Feb, 2021 2 commits
  21. 08 Feb, 2021 1 commit
  22. 02 Feb, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add Quantizable MobilenetV3 architecture for Classification (#3323) · 8317295c
      Vasilis Vryniotis authored
      * Refactoring mobilenetv3 to make code reusable.
      
      * Adding quantizable MobileNetV3 architecture.
      
      * Fix bug on reference script.
      
      * Moving documentation of quantized models in the right place.
      
      * Update documentation.
      
      * Workaround for loading correct weights of quant model.
      
      * Update weight URL and readme.
      
      * Adding eval.
      8317295c
  23. 27 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Segmentation (#3276) · e2db2edd
      Vasilis Vryniotis authored
      * Making _segm_resnet() generic and reusable.
      
      * Adding fcn and deeplabv3 directly on mobilenetv3 backbone.
      
      * Adding tests for segmentation models.
      
      * Rename is_strided with _is_cn.
      
      * Add dilation support on MobileNetV3 for Segmentation.
      
      * Add Lite R-ASPP with MobileNetV3 backbone.
      
      * Add pretrained model weights.
      
      * Removing model fcn_mobilenet_v3_large.
      
      * Adding docs and imports.
      
      * Fixing typo and readme.
      e2db2edd
  24. 26 Jan, 2021 1 commit
  25. 19 Jan, 2021 1 commit
  26. 18 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Detection (#3253) · bf211dac
      Vasilis Vryniotis authored
      * Minor refactoring of a private method to make it reusuable.
      
      * Adding a FasterRCNN + MobileNetV3 with & w/o FPN models.
      
      * Reducing Resolution to 320-640 and anchor sizes to 16-256.
      
      * Increase anchor sizes.
      
      * Adding rpn score threshold param on the train script.
      
      * Adding trainable_backbone_layers param on the train script.
      
      * Adding rpn_score_thresh param directly in fasterrcnn_mobilenet_v3_large_fpn.
      
      * Remove fasterrcnn_mobilenet_v3_large prototype and update expected file.
      
      * Update documentation and adding weights.
      
      * Use buildin Identity.
      
      * Fix spelling.
      bf211dac
  27. 14 Jan, 2021 1 commit
    • Vasilis Vryniotis's avatar
      Add MobileNetV3 architecture for Classification (#3252) · 7bf6e7b1
      Vasilis Vryniotis authored
      * Add MobileNetV3 Architecture in TorchVision (#3182)
      
      * Adding implementation of network architecture
      
      * Adding rmsprop support on the train.py
      
      * Adding auto-augment and random-erase in the training scripts.
      
      * Adding support for reduced tail on MobileNetV3.
      
      * Tagging blocks with comments.
      
      * Adding documentation, pre-trained model URL and a minor refactoring.
      
      * Handling better untrained supported models.
      7bf6e7b1
  28. 04 Jan, 2021 1 commit
  29. 27 Nov, 2020 1 commit
    • Aditya Oke's avatar
      Add utility to draw bounding boxes (#2785) · 240210c9
      Aditya Oke authored
      
      
      * initital prototype
      
      * flake
      
      * Adds documentation
      
      * minimal working bboxes
      
      * Adds label display
      
      * adds colors :-)
      
      * adds suggestions and fixes CI
      
      * handles image of dim 4
      
      * fixes image handling
      
      * removes dev file
      
      * adds suggested changes
      
      * Updating the API.
      
      * Update test.
      
      * Implementing code review improvements.
      
      * Further refactoring and adding test.
      
      * Replace random to white to reduce size and change font on tests.
      Co-authored-by: default avatarVasilis Vryniotis <vvryniotis@fb.com>
      240210c9
  30. 26 Nov, 2020 1 commit
  31. 10 Nov, 2020 1 commit
  32. 27 Oct, 2020 1 commit
  33. 16 Oct, 2020 1 commit
  34. 13 Oct, 2020 2 commits
    • Bruno Korbar's avatar
      VideoAPI docs update (#2802) · 2831f11a
      Bruno Korbar authored
      
      
      * Video reader now returns dicts
      
      * docs update
      
      * Minor improvements
      Co-authored-by: default avatarBruno Korbar <bjuncek@Frazz.local>
      Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
      2831f11a
    • Francisco Massa's avatar
      RetinaNet object detection (take 2) (#2784) · 5bb81c8e
      Francisco Massa authored
      
      
      * Add rough implementation of RetinaNet.
      
      * Move AnchorGenerator to a seperate file.
      
      * Move box similarity to Matcher.
      
      * Expose extra blocks in FPN.
      
      * Expose retinanet in __init__.py.
      
      * Use P6 and P7 in FPN for retinanet.
      
      * Use parameters from retinanet for anchor generation.
      
      * General fixes for retinanet model.
      
      * Implement loss for retinanet heads.
      
      * Output reshaped outputs from retinanet heads.
      
      * Add postprocessing of detections.
      
      * Small fixes.
      
      * Remove unused argument.
      
      * Remove python2 invocation of super.
      
      * Add postprocessing for additional outputs.
      
      * Add missing import of ImageList.
      
      * Remove redundant import.
      
      * Simplify class correction.
      
      * Fix pylint warnings.
      
      * Remove the label adjustment for background class.
      
      * Set default score threshold to 0.05.
      
      * Add weight initialization for regression layer.
      
      * Allow training on images with no annotations.
      
      * Use smooth_l1_loss with beta value.
      
      * Add more typehints for TorchScript conversions.
      
      * Fix linting issues.
      
      * Fix type hints in postprocess_detections.
      
      * Fix type annotations for TorchScript.
      
      * Fix inconsistency with matched_idxs.
      
      * Add retinanet model test.
      
      * Add missing JIT annotations.
      
      * Remove redundant model construction
      
      Make tests pass
      
      * Fix bugs during training on newer PyTorch and unused params in DDP
      
      Needs cleanup and to add back support for images with no annotations
      
      * Cleanup resnet_fpn_backbone
      
      * Use L1 loss for regression
      
      Gives 1mAP improvement over smooth l1
      
      * Disable support for images with no annotations
      
      Need to fix distributed first
      
      * Fix retinanet tests
      
      Need to deduplicate those box checks
      
      * Fix Lint
      
      * Add pretrained model
      
      * Add training info for retinanet
      Co-authored-by: default avatarHans Gaiser <hansg91@gmail.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robovalley.com>
      Co-authored-by: default avatarHans Gaiser <hans.gaiser@robohouse.com>
      5bb81c8e
  35. 12 Oct, 2020 1 commit