"sgl-kernel/vscode:/vscode.git/clone" did not exist on "2c2b19b18ba7ee24e321d692ba84a69fa6cf532d"
_geometry.py 84.6 KB
Newer Older
1
import math
2
import numbers
3
import warnings
4
from typing import Any, List, Optional, Sequence, Tuple, Union
5
6
7

import PIL.Image
import torch
8
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
9

10
from torchvision import tv_tensors
11
12
from torchvision.transforms import _functional_pil as _FP
from torchvision.transforms._functional_tensor import _pad_symmetric
13
from torchvision.transforms.functional import (
14
    _check_antialias,
15
    _compute_resized_output_size as __compute_resized_output_size,
16
    _get_perspective_coeffs,
17
    _interpolation_modes_from_int,
18
    InterpolationMode,
19
    pil_modes_mapping,
20
21
    pil_to_tensor,
    to_pil_image,
22
)
23

24
25
from torchvision.utils import _log_api_usage_once

Nicolas Hug's avatar
Nicolas Hug committed
26
from ._meta import _get_size_image_pil, clamp_bounding_boxes, convert_bounding_box_format
27

28
from ._utils import _FillTypeJIT, _get_kernel, _register_five_ten_crop_kernel_internal, _register_kernel_internal
29

30

31
32
33
34
35
36
37
38
39
40
41
def _check_interpolation(interpolation: Union[InterpolationMode, int]) -> InterpolationMode:
    if isinstance(interpolation, int):
        interpolation = _interpolation_modes_from_int(interpolation)
    elif not isinstance(interpolation, InterpolationMode):
        raise ValueError(
            f"Argument interpolation should be an `InterpolationMode` or a corresponding Pillow integer constant, "
            f"but got {interpolation}."
        )
    return interpolation


42
def horizontal_flip(inpt: torch.Tensor) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
43
    """[BETA] See :class:`~torchvision.transforms.v2.RandomHorizontalFlip` for details."""
44
    if torch.jit.is_scripting():
45
        return horizontal_flip_image(inpt)
46
47
48
49
50

    _log_api_usage_once(horizontal_flip)

    kernel = _get_kernel(horizontal_flip, type(inpt))
    return kernel(inpt)
51
52


53
@_register_kernel_internal(horizontal_flip, torch.Tensor)
54
@_register_kernel_internal(horizontal_flip, tv_tensors.Image)
55
def horizontal_flip_image(image: torch.Tensor) -> torch.Tensor:
56
57
58
    return image.flip(-1)


59
@_register_kernel_internal(horizontal_flip, PIL.Image.Image)
60
def _horizontal_flip_image_pil(image: PIL.Image.Image) -> PIL.Image.Image:
61
    return _FP.hflip(image)
62
63


64
@_register_kernel_internal(horizontal_flip, tv_tensors.Mask)
65
def horizontal_flip_mask(mask: torch.Tensor) -> torch.Tensor:
66
    return horizontal_flip_image(mask)
67
68


69
def horizontal_flip_bounding_boxes(
70
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
71
) -> torch.Tensor:
72
    shape = bounding_boxes.shape
73

74
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
75

76
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
77
        bounding_boxes[:, [2, 0]] = bounding_boxes[:, [0, 2]].sub_(canvas_size[1]).neg_()
78
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
79
        bounding_boxes[:, 0].add_(bounding_boxes[:, 2]).sub_(canvas_size[1]).neg_()
80
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
81
        bounding_boxes[:, 0].sub_(canvas_size[1]).neg_()
82

83
    return bounding_boxes.reshape(shape)
84
85


86
87
@_register_kernel_internal(horizontal_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _horizontal_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
88
89
90
    output = horizontal_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
91
    return tv_tensors.wrap(output, like=inpt)
92
93


94
@_register_kernel_internal(horizontal_flip, tv_tensors.Video)
95
def horizontal_flip_video(video: torch.Tensor) -> torch.Tensor:
96
    return horizontal_flip_image(video)
97
98


99
def vertical_flip(inpt: torch.Tensor) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
100
    """[BETA] See :class:`~torchvision.transforms.v2.RandomVerticalFlip` for details."""
101
    if torch.jit.is_scripting():
102
        return vertical_flip_image(inpt)
103
104
105
106
107

    _log_api_usage_once(vertical_flip)

    kernel = _get_kernel(vertical_flip, type(inpt))
    return kernel(inpt)
108
109


110
@_register_kernel_internal(vertical_flip, torch.Tensor)
111
@_register_kernel_internal(vertical_flip, tv_tensors.Image)
112
def vertical_flip_image(image: torch.Tensor) -> torch.Tensor:
113
114
115
    return image.flip(-2)


116
@_register_kernel_internal(vertical_flip, PIL.Image.Image)
117
def _vertical_flip_image_pil(image: PIL.Image) -> PIL.Image:
Philip Meier's avatar
Philip Meier committed
118
    return _FP.vflip(image)
119
120


121
@_register_kernel_internal(vertical_flip, tv_tensors.Mask)
122
def vertical_flip_mask(mask: torch.Tensor) -> torch.Tensor:
123
    return vertical_flip_image(mask)
124
125


126
def vertical_flip_bounding_boxes(
127
    bounding_boxes: torch.Tensor, format: tv_tensors.BoundingBoxFormat, canvas_size: Tuple[int, int]
128
) -> torch.Tensor:
129
    shape = bounding_boxes.shape
130

131
    bounding_boxes = bounding_boxes.clone().reshape(-1, 4)
132

133
    if format == tv_tensors.BoundingBoxFormat.XYXY:
Philip Meier's avatar
Philip Meier committed
134
        bounding_boxes[:, [1, 3]] = bounding_boxes[:, [3, 1]].sub_(canvas_size[0]).neg_()
135
    elif format == tv_tensors.BoundingBoxFormat.XYWH:
Philip Meier's avatar
Philip Meier committed
136
        bounding_boxes[:, 1].add_(bounding_boxes[:, 3]).sub_(canvas_size[0]).neg_()
137
    else:  # format == tv_tensors.BoundingBoxFormat.CXCYWH:
Philip Meier's avatar
Philip Meier committed
138
        bounding_boxes[:, 1].sub_(canvas_size[0]).neg_()
139

140
    return bounding_boxes.reshape(shape)
141
142


143
144
@_register_kernel_internal(vertical_flip, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
def _vertical_flip_bounding_boxes_dispatch(inpt: tv_tensors.BoundingBoxes) -> tv_tensors.BoundingBoxes:
145
146
147
    output = vertical_flip_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size
    )
148
    return tv_tensors.wrap(output, like=inpt)
149

150

151
@_register_kernel_internal(vertical_flip, tv_tensors.Video)
152
def vertical_flip_video(video: torch.Tensor) -> torch.Tensor:
153
    return vertical_flip_image(video)
154
155


156
157
158
159
160
161
# We changed the names to align them with the transforms, i.e. `RandomHorizontalFlip`. Still, `hflip` and `vflip` are
# prevalent and well understood. Thus, we just alias them without deprecating the old names.
hflip = horizontal_flip
vflip = vertical_flip


162
def _compute_resized_output_size(
Philip Meier's avatar
Philip Meier committed
163
    canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
164
165
166
) -> List[int]:
    if isinstance(size, int):
        size = [size]
167
168
169
170
171
    elif max_size is not None and len(size) != 1:
        raise ValueError(
            "max_size should only be passed if size specifies the length of the smaller edge, "
            "i.e. size should be an int or a sequence of length 1 in torchscript mode."
        )
Philip Meier's avatar
Philip Meier committed
172
    return __compute_resized_output_size(canvas_size, size=size, max_size=max_size)
173
174


175
def resize(
176
    inpt: torch.Tensor,
177
178
179
180
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
181
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
182
    """[BETA] See :class:`~torchvision.transforms.v2.Resize` for details."""
183
    if torch.jit.is_scripting():
184
        return resize_image(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
185
186
187
188
189

    _log_api_usage_once(resize)

    kernel = _get_kernel(resize, type(inpt))
    return kernel(inpt, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
190
191


192
@_register_kernel_internal(resize, torch.Tensor)
193
@_register_kernel_internal(resize, tv_tensors.Image)
194
def resize_image(
195
196
    image: torch.Tensor,
    size: List[int],
197
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
198
    max_size: Optional[int] = None,
199
    antialias: Optional[Union[str, bool]] = "warn",
200
) -> torch.Tensor:
201
    interpolation = _check_interpolation(interpolation)
202
203
    antialias = _check_antialias(img=image, antialias=antialias, interpolation=interpolation)
    assert not isinstance(antialias, str)
204
    antialias = False if antialias is None else antialias
205
206
207
    align_corners: Optional[bool] = None
    if interpolation == InterpolationMode.BILINEAR or interpolation == InterpolationMode.BICUBIC:
        align_corners = False
208
209
210
211
    else:
        # The default of antialias should be True from 0.17, so we don't warn or
        # error if other interpolation modes are used. This is documented.
        antialias = False
212

213
    shape = image.shape
214
    numel = image.numel()
215
    num_channels, old_height, old_width = shape[-3:]
vfdev's avatar
vfdev committed
216
    new_height, new_width = _compute_resized_output_size((old_height, old_width), size=size, max_size=max_size)
217

218
219
    if (new_height, new_width) == (old_height, old_width):
        return image
220
    elif numel > 0:
221
        image = image.reshape(-1, num_channels, old_height, old_width)
222

223
        dtype = image.dtype
224
225
226
227
        acceptable_dtypes = [torch.float32, torch.float64]
        if interpolation == InterpolationMode.NEAREST or interpolation == InterpolationMode.NEAREST_EXACT:
            # uint8 dtype can be included for cpu and cuda input if nearest mode
            acceptable_dtypes.append(torch.uint8)
228
229
230
231
232
233
234
        elif image.device.type == "cpu":
            # uint8 dtype support for bilinear and bicubic is limited to cpu and
            # according to our benchmarks, non-AVX CPUs should still prefer u8->f32->interpolate->u8 path for bilinear
            if (interpolation == InterpolationMode.BILINEAR and "AVX2" in torch.backends.cpu.get_cpu_capability()) or (
                interpolation == InterpolationMode.BICUBIC
            ):
                acceptable_dtypes.append(torch.uint8)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

        strides = image.stride()
        if image.is_contiguous(memory_format=torch.channels_last) and image.shape[0] == 1 and numel != strides[0]:
            # There is a weird behaviour in torch core where the output tensor of `interpolate()` can be allocated as
            # contiguous even though the input is un-ambiguously channels_last (https://github.com/pytorch/pytorch/issues/68430).
            # In particular this happens for the typical torchvision use-case of single CHW images where we fake the batch dim
            # to become 1CHW. Below, we restride those tensors to trick torch core into properly allocating the output as
            # channels_last, thus preserving the memory format of the input. This is not just for format consistency:
            # for uint8 bilinear images, this also avoids an extra copy (re-packing) of the output and saves time.
            # TODO: when https://github.com/pytorch/pytorch/issues/68430 is fixed (possibly by https://github.com/pytorch/pytorch/pull/100373),
            # we should be able to remove this hack.
            new_strides = list(strides)
            new_strides[0] = numel
            image = image.as_strided((1, num_channels, old_height, old_width), new_strides)

        need_cast = dtype not in acceptable_dtypes
251
252
253
254
        if need_cast:
            image = image.to(dtype=torch.float32)

        image = interpolate(
255
256
            image,
            size=[new_height, new_width],
257
258
            mode=interpolation.value,
            align_corners=align_corners,
259
260
            antialias=antialias,
        )
261

262
263
        if need_cast:
            if interpolation == InterpolationMode.BICUBIC and dtype == torch.uint8:
264
                # This path is hit on non-AVX archs, or on GPU.
265
                image = image.clamp_(min=0, max=255)
266
267
268
            if dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
                image = image.round_()
            image = image.to(dtype=dtype)
269

270
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
271
272


273
def _resize_image_pil(
274
    image: PIL.Image.Image,
275
    size: Union[Sequence[int], int],
276
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
277
278
    max_size: Optional[int] = None,
) -> PIL.Image.Image:
279
280
281
282
283
284
285
    old_height, old_width = image.height, image.width
    new_height, new_width = _compute_resized_output_size(
        (old_height, old_width),
        size=size,  # type: ignore[arg-type]
        max_size=max_size,
    )

286
    interpolation = _check_interpolation(interpolation)
287
288
289
290
291

    if (new_height, new_width) == (old_height, old_width):
        return image

    return image.resize((new_width, new_height), resample=pil_modes_mapping[interpolation])
292
293


294
@_register_kernel_internal(resize, PIL.Image.Image)
295
def __resize_image_pil_dispatch(
296
297
298
299
300
301
302
303
    image: PIL.Image.Image,
    size: Union[Sequence[int], int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    max_size: Optional[int] = None,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
304
    return _resize_image_pil(image, size=size, interpolation=interpolation, max_size=max_size)
305
306


307
308
309
def resize_mask(mask: torch.Tensor, size: List[int], max_size: Optional[int] = None) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
310
311
312
313
        needs_squeeze = True
    else:
        needs_squeeze = False

314
    output = resize_image(mask, size=size, interpolation=InterpolationMode.NEAREST, max_size=max_size)
315
316
317
318
319

    if needs_squeeze:
        output = output.squeeze(0)

    return output
320
321


322
@_register_kernel_internal(resize, tv_tensors.Mask, tv_tensor_wrapper=False)
323
def _resize_mask_dispatch(
324
325
    inpt: tv_tensors.Mask, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.Mask:
326
    output = resize_mask(inpt.as_subclass(torch.Tensor), size, max_size=max_size)
327
    return tv_tensors.wrap(output, like=inpt)
328
329


330
def resize_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
331
    bounding_boxes: torch.Tensor, canvas_size: Tuple[int, int], size: List[int], max_size: Optional[int] = None
332
) -> Tuple[torch.Tensor, Tuple[int, int]]:
Philip Meier's avatar
Philip Meier committed
333
334
    old_height, old_width = canvas_size
    new_height, new_width = _compute_resized_output_size(canvas_size, size=size, max_size=max_size)
335
336

    if (new_height, new_width) == (old_height, old_width):
Philip Meier's avatar
Philip Meier committed
337
        return bounding_boxes, canvas_size
338

339
340
    w_ratio = new_width / old_width
    h_ratio = new_height / old_height
341
    ratios = torch.tensor([w_ratio, h_ratio, w_ratio, h_ratio], device=bounding_boxes.device)
342
    return (
343
        bounding_boxes.mul(ratios).to(bounding_boxes.dtype),
344
345
        (new_height, new_width),
    )
346
347


348
@_register_kernel_internal(resize, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
349
def _resize_bounding_boxes_dispatch(
350
351
    inpt: tv_tensors.BoundingBoxes, size: List[int], max_size: Optional[int] = None, **kwargs: Any
) -> tv_tensors.BoundingBoxes:
352
353
354
    output, canvas_size = resize_bounding_boxes(
        inpt.as_subclass(torch.Tensor), inpt.canvas_size, size, max_size=max_size
    )
355
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
356
357


358
@_register_kernel_internal(resize, tv_tensors.Video)
359
360
361
def resize_video(
    video: torch.Tensor,
    size: List[int],
362
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
363
    max_size: Optional[int] = None,
364
    antialias: Optional[Union[str, bool]] = "warn",
365
) -> torch.Tensor:
366
    return resize_image(video, size=size, interpolation=interpolation, max_size=max_size, antialias=antialias)
367
368


369
def affine(
370
    inpt: torch.Tensor,
371
372
373
374
375
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
376
    fill: _FillTypeJIT = None,
377
    center: Optional[List[float]] = None,
378
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
379
    """[BETA] See :class:`~torchvision.transforms.v2.RandomAffine` for details."""
380
    if torch.jit.is_scripting():
381
        return affine_image(
382
            inpt,
383
            angle=angle,
384
385
386
387
388
389
390
            translate=translate,
            scale=scale,
            shear=shear,
            interpolation=interpolation,
            fill=fill,
            center=center,
        )
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    _log_api_usage_once(affine)

    kernel = _get_kernel(affine, type(inpt))
    return kernel(
        inpt,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )
405
406


407
def _affine_parse_args(
408
    angle: Union[int, float],
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    translate: List[float],
    scale: float,
    shear: List[float],
    interpolation: InterpolationMode = InterpolationMode.NEAREST,
    center: Optional[List[float]] = None,
) -> Tuple[float, List[float], List[float], Optional[List[float]]]:
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")

    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError(f"Shear should be a sequence containing two values. Got {shear}")

451
452
453
454
455
    if center is not None:
        if not isinstance(center, (list, tuple)):
            raise TypeError("Argument center should be a sequence")
        else:
            center = [float(c) for c in center]
456
457
458
459

    return angle, translate, shear, center


460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
def _get_inverse_affine_matrix(
    center: List[float], angle: float, translate: List[float], scale: float, shear: List[float], inverted: bool = True
) -> List[float]:
    # Helper method to compute inverse matrix for affine transformation

    # Pillow requires inverse affine transformation matrix:
    # Affine matrix is : M = T * C * RotateScaleShear * C^-1
    #
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RotateScaleShear is rotation with scale and shear matrix
    #
    #       RotateScaleShear(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(sx)/cos(sy) - sin(a)), 0 ]
    #         [ s*sin(a - sy)/cos(sy), s*(-sin(a - sy)*tan(sx)/cos(sy) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
    # Thus, the inverse is M^-1 = C * RotateScaleShear^-1 * C^-1 * T^-1

    rot = math.radians(angle)
    sx = math.radians(shear[0])
    sy = math.radians(shear[1])

    cx, cy = center
    tx, ty = translate

    # Cached results
    cos_sy = math.cos(sy)
    tan_sx = math.tan(sx)
    rot_minus_sy = rot - sy
    cx_plus_tx = cx + tx
    cy_plus_ty = cy + ty

    # Rotate Scale Shear (RSS) without scaling
    a = math.cos(rot_minus_sy) / cos_sy
    b = -(a * tan_sx + math.sin(rot))
    c = math.sin(rot_minus_sy) / cos_sy
    d = math.cos(rot) - c * tan_sx

    if inverted:
        # Inverted rotation matrix with scale and shear
        # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
        matrix = [d / scale, -b / scale, 0.0, -c / scale, a / scale, 0.0]
        # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
        # and then apply center translation: C * RSS^-1 * C^-1 * T^-1
        matrix[2] += cx - matrix[0] * cx_plus_tx - matrix[1] * cy_plus_ty
        matrix[5] += cy - matrix[3] * cx_plus_tx - matrix[4] * cy_plus_ty
    else:
        matrix = [a * scale, b * scale, 0.0, c * scale, d * scale, 0.0]
        # Apply inverse of center translation: RSS * C^-1
        # and then apply translation and center : T * C * RSS * C^-1
        matrix[2] += cx_plus_tx - matrix[0] * cx - matrix[1] * cy
        matrix[5] += cy_plus_ty - matrix[3] * cx - matrix[4] * cy

    return matrix


def _compute_affine_output_size(matrix: List[float], w: int, h: int) -> Tuple[int, int]:
    # Inspired of PIL implementation:
    # https://github.com/python-pillow/Pillow/blob/11de3318867e4398057373ee9f12dcb33db7335c/src/PIL/Image.py#L2054

    # pts are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
    # Points are shifted due to affine matrix torch convention about
    # the center point. Center is (0, 0) for image center pivot point (w * 0.5, h * 0.5)
    half_w = 0.5 * w
    half_h = 0.5 * h
    pts = torch.tensor(
        [
            [-half_w, -half_h, 1.0],
            [-half_w, half_h, 1.0],
            [half_w, half_h, 1.0],
            [half_w, -half_h, 1.0],
        ]
    )
    theta = torch.tensor(matrix, dtype=torch.float).view(2, 3)
    new_pts = torch.matmul(pts, theta.T)
    min_vals, max_vals = new_pts.aminmax(dim=0)

    # shift points to [0, w] and [0, h] interval to match PIL results
    halfs = torch.tensor((half_w, half_h))
    min_vals.add_(halfs)
    max_vals.add_(halfs)

    # Truncate precision to 1e-4 to avoid ceil of Xe-15 to 1.0
    tol = 1e-4
    inv_tol = 1.0 / tol
    cmax = max_vals.mul_(inv_tol).trunc_().mul_(tol).ceil_()
    cmin = min_vals.mul_(inv_tol).trunc_().mul_(tol).floor_()
    size = cmax.sub_(cmin)
    return int(size[0]), int(size[1])  # w, h


556
def _apply_grid_transform(img: torch.Tensor, grid: torch.Tensor, mode: str, fill: _FillTypeJIT) -> torch.Tensor:
557

558
559
560
561
    # We are using context knowledge that grid should have float dtype
    fp = img.dtype == grid.dtype
    float_img = img if fp else img.to(grid.dtype)

562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    shape = float_img.shape
    if shape[0] > 1:
        # Apply same grid to a batch of images
        grid = grid.expand(shape[0], -1, -1, -1)

    # Append a dummy mask for customized fill colors, should be faster than grid_sample() twice
    if fill is not None:
        mask = torch.ones((shape[0], 1, shape[2], shape[3]), dtype=float_img.dtype, device=float_img.device)
        float_img = torch.cat((float_img, mask), dim=1)

    float_img = grid_sample(float_img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        float_img, mask = torch.tensor_split(float_img, indices=(-1,), dim=-3)
        mask = mask.expand_as(float_img)
578
        fill_list = fill if isinstance(fill, (tuple, list)) else [float(fill)]  # type: ignore[arg-type]
579
580
581
582
583
584
585
586
587
        fill_img = torch.tensor(fill_list, dtype=float_img.dtype, device=float_img.device).view(1, -1, 1, 1)
        if mode == "nearest":
            bool_mask = mask < 0.5
            float_img[bool_mask] = fill_img.expand_as(float_img)[bool_mask]
        else:  # 'bilinear'
            # The following is mathematically equivalent to:
            # img * mask + (1.0 - mask) * fill = img * mask - fill * mask + fill = mask * (img - fill) + fill
            float_img = float_img.sub_(fill_img).mul_(mask).add_(fill_img)

588
589
590
    img = float_img.round_().to(img.dtype) if not fp else float_img

    return img
591
592
593
594
595
596


def _assert_grid_transform_inputs(
    image: torch.Tensor,
    matrix: Optional[List[float]],
    interpolation: str,
597
    fill: _FillTypeJIT,
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
    supported_interpolation_modes: List[str],
    coeffs: Optional[List[float]] = None,
) -> None:
    if matrix is not None:
        if not isinstance(matrix, list):
            raise TypeError("Argument matrix should be a list")
        elif len(matrix) != 6:
            raise ValueError("Argument matrix should have 6 float values")

    if coeffs is not None and len(coeffs) != 8:
        raise ValueError("Argument coeffs should have 8 float values")

    if fill is not None:
        if isinstance(fill, (tuple, list)):
            length = len(fill)
            num_channels = image.shape[-3]
            if length > 1 and length != num_channels:
                raise ValueError(
                    "The number of elements in 'fill' cannot broadcast to match the number of "
                    f"channels of the image ({length} != {num_channels})"
                )
        elif not isinstance(fill, (int, float)):
            raise ValueError("Argument fill should be either int, float, tuple or list")

    if interpolation not in supported_interpolation_modes:
        raise ValueError(f"Interpolation mode '{interpolation}' is unsupported with Tensor input")


def _affine_grid(
    theta: torch.Tensor,
    w: int,
    h: int,
    ow: int,
    oh: int,
) -> torch.Tensor:
    # https://github.com/pytorch/pytorch/blob/74b65c32be68b15dc7c9e8bb62459efbfbde33d8/aten/src/ATen/native/
    # AffineGridGenerator.cpp#L18
    # Difference with AffineGridGenerator is that:
    # 1) we normalize grid values after applying theta
    # 2) we can normalize by other image size, such that it covers "extend" option like in PIL.Image.rotate
    dtype = theta.dtype
    device = theta.device

    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
    x_grid = torch.linspace((1.0 - ow) * 0.5, (ow - 1.0) * 0.5, steps=ow, device=device)
    base_grid[..., 0].copy_(x_grid)
    y_grid = torch.linspace((1.0 - oh) * 0.5, (oh - 1.0) * 0.5, steps=oh, device=device).unsqueeze_(-1)
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta = theta.transpose(1, 2).div_(torch.tensor([0.5 * w, 0.5 * h], dtype=dtype, device=device))
    output_grid = base_grid.view(1, oh * ow, 3).bmm(rescaled_theta)
    return output_grid.view(1, oh, ow, 2)


653
@_register_kernel_internal(affine, torch.Tensor)
654
@_register_kernel_internal(affine, tv_tensors.Image)
655
def affine_image(
656
    image: torch.Tensor,
657
    angle: Union[int, float],
658
659
660
    translate: List[float],
    scale: float,
    shear: List[float],
661
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
662
    fill: _FillTypeJIT = None,
663
664
    center: Optional[List[float]] = None,
) -> torch.Tensor:
665
666
    interpolation = _check_interpolation(interpolation)

667
668
    if image.numel() == 0:
        return image
669

670
    shape = image.shape
671
    ndim = image.ndim
672

673
674
675
676
677
678
679
680
681
682
    if ndim > 4:
        image = image.reshape((-1,) + shape[-3:])
        needs_unsquash = True
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
    else:
        needs_unsquash = False

    height, width = shape[-2:]
683
684
685
686
687
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    center_f = [0.0, 0.0]
    if center is not None:
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
688
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
689

690
    translate_f = [float(t) for t in translate]
691
692
    matrix = _get_inverse_affine_matrix(center_f, angle, translate_f, scale, shear)

693
694
    _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

695
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
696
697
    theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
    grid = _affine_grid(theta, w=width, h=height, ow=width, oh=height)
698
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
699
700
701
702
703

    if needs_unsquash:
        output = output.reshape(shape)

    return output
704
705


706
@_register_kernel_internal(affine, PIL.Image.Image)
707
def _affine_image_pil(
708
    image: PIL.Image.Image,
709
    angle: Union[int, float],
710
711
712
    translate: List[float],
    scale: float,
    shear: List[float],
713
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
714
    fill: _FillTypeJIT = None,
715
716
    center: Optional[List[float]] = None,
) -> PIL.Image.Image:
717
    interpolation = _check_interpolation(interpolation)
718
719
720
721
722
723
    angle, translate, shear, center = _affine_parse_args(angle, translate, scale, shear, interpolation, center)

    # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
    # it is visually better to estimate the center without 0.5 offset
    # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
    if center is None:
724
        height, width = _get_size_image_pil(image)
725
726
727
        center = [width * 0.5, height * 0.5]
    matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)

728
    return _FP.affine(image, matrix, interpolation=pil_modes_mapping[interpolation], fill=fill)
729
730


731
732
def _affine_bounding_boxes_with_expand(
    bounding_boxes: torch.Tensor,
733
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
734
    canvas_size: Tuple[int, int],
735
736
737
738
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
739
    center: Optional[List[float]] = None,
740
    expand: bool = False,
741
) -> Tuple[torch.Tensor, Tuple[int, int]]:
742
    if bounding_boxes.numel() == 0:
Philip Meier's avatar
Philip Meier committed
743
        return bounding_boxes, canvas_size
744
745
746
747
748
749
750

    original_shape = bounding_boxes.shape
    original_dtype = bounding_boxes.dtype
    bounding_boxes = bounding_boxes.clone() if bounding_boxes.is_floating_point() else bounding_boxes.float()
    dtype = bounding_boxes.dtype
    device = bounding_boxes.device
    bounding_boxes = (
Nicolas Hug's avatar
Nicolas Hug committed
751
        convert_bounding_box_format(
752
            bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY, inplace=True
753
754
755
        )
    ).reshape(-1, 4)

756
757
758
    angle, translate, shear, center = _affine_parse_args(
        angle, translate, scale, shear, InterpolationMode.NEAREST, center
    )
759

760
    if center is None:
Philip Meier's avatar
Philip Meier committed
761
        height, width = canvas_size
762
763
        center = [width * 0.5, height * 0.5]

764
765
766
767
768
769
770
    affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear, inverted=False)
    transposed_affine_matrix = (
        torch.tensor(
            affine_vector,
            dtype=dtype,
            device=device,
        )
771
        .reshape(2, 3)
772
773
        .T
    )
774
775
776
777
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
778
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
779
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=device, dtype=dtype)], dim=-1)
780
    # 2) Now let's transform the points using affine matrix
781
    transformed_points = torch.matmul(points, transposed_affine_matrix)
782
783
    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
784
    transformed_points = transformed_points.reshape(-1, 4, 2)
785
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
786
    out_bboxes = torch.cat([out_bbox_mins, out_bbox_maxs], dim=1)
787
788
789
790

    if expand:
        # Compute minimum point for transformed image frame:
        # Points are Top-Left, Top-Right, Bottom-Left, Bottom-Right points.
Philip Meier's avatar
Philip Meier committed
791
        height, width = canvas_size
792
793
794
        points = torch.tensor(
            [
                [0.0, 0.0, 1.0],
795
796
797
                [0.0, float(height), 1.0],
                [float(width), float(height), 1.0],
                [float(width), 0.0, 1.0],
798
799
800
801
            ],
            dtype=dtype,
            device=device,
        )
802
        new_points = torch.matmul(points, transposed_affine_matrix)
803
        tr = torch.amin(new_points, dim=0, keepdim=True)
804
        # Translate bounding boxes
805
        out_bboxes.sub_(tr.repeat((1, 2)))
806
807
        # Estimate meta-data for image with inverted=True
        affine_vector = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
808
        new_width, new_height = _compute_affine_output_size(affine_vector, width, height)
Philip Meier's avatar
Philip Meier committed
809
        canvas_size = (new_height, new_width)
810

811
    out_bboxes = clamp_bounding_boxes(out_bboxes, format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size)
Nicolas Hug's avatar
Nicolas Hug committed
812
    out_bboxes = convert_bounding_box_format(
813
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
814
815
816
    ).reshape(original_shape)

    out_bboxes = out_bboxes.to(original_dtype)
Philip Meier's avatar
Philip Meier committed
817
    return out_bboxes, canvas_size
818
819


820
821
def affine_bounding_boxes(
    bounding_boxes: torch.Tensor,
822
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
823
    canvas_size: Tuple[int, int],
824
    angle: Union[int, float],
825
826
827
828
829
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
) -> torch.Tensor:
830
831
    out_box, _ = _affine_bounding_boxes_with_expand(
        bounding_boxes,
832
        format=format,
Philip Meier's avatar
Philip Meier committed
833
        canvas_size=canvas_size,
834
835
836
837
838
839
840
841
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
        expand=False,
    )
    return out_box
842
843


844
@_register_kernel_internal(affine, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
845
def _affine_bounding_boxes_dispatch(
846
    inpt: tv_tensors.BoundingBoxes,
847
848
849
850
851
852
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
    center: Optional[List[float]] = None,
    **kwargs,
853
) -> tv_tensors.BoundingBoxes:
854
855
856
857
858
859
860
861
862
863
    output = affine_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        center=center,
    )
864
    return tv_tensors.wrap(output, like=inpt)
865
866


867
868
def affine_mask(
    mask: torch.Tensor,
869
    angle: Union[int, float],
870
871
872
    translate: List[float],
    scale: float,
    shear: List[float],
873
    fill: _FillTypeJIT = None,
874
875
    center: Optional[List[float]] = None,
) -> torch.Tensor:
876
877
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
878
879
880
881
        needs_squeeze = True
    else:
        needs_squeeze = False

882
    output = affine_image(
883
        mask,
884
885
886
887
888
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=InterpolationMode.NEAREST,
889
        fill=fill,
890
891
892
        center=center,
    )

893
894
895
896
897
    if needs_squeeze:
        output = output.squeeze(0)

    return output

898

899
@_register_kernel_internal(affine, tv_tensors.Mask, tv_tensor_wrapper=False)
900
def _affine_mask_dispatch(
901
    inpt: tv_tensors.Mask,
902
903
904
905
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
906
    fill: _FillTypeJIT = None,
907
908
    center: Optional[List[float]] = None,
    **kwargs,
909
) -> tv_tensors.Mask:
910
911
912
913
914
915
916
917
918
    output = affine_mask(
        inpt.as_subclass(torch.Tensor),
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        fill=fill,
        center=center,
    )
919
    return tv_tensors.wrap(output, like=inpt)
920
921


922
@_register_kernel_internal(affine, tv_tensors.Video)
923
924
925
926
927
928
def affine_video(
    video: torch.Tensor,
    angle: Union[int, float],
    translate: List[float],
    scale: float,
    shear: List[float],
929
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
930
    fill: _FillTypeJIT = None,
931
932
    center: Optional[List[float]] = None,
) -> torch.Tensor:
933
    return affine_image(
934
935
936
937
938
939
940
941
942
943
944
        video,
        angle=angle,
        translate=translate,
        scale=scale,
        shear=shear,
        interpolation=interpolation,
        fill=fill,
        center=center,
    )


945
def rotate(
946
    inpt: torch.Tensor,
947
    angle: float,
948
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
949
    expand: bool = False,
950
    center: Optional[List[float]] = None,
951
952
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
953
    """[BETA] See :class:`~torchvision.transforms.v2.RandomRotation` for details."""
954
    if torch.jit.is_scripting():
955
        return rotate_image(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
956

957
    _log_api_usage_once(rotate)
958

959
960
961
962
963
    kernel = _get_kernel(rotate, type(inpt))
    return kernel(inpt, angle=angle, interpolation=interpolation, expand=expand, fill=fill, center=center)


@_register_kernel_internal(rotate, torch.Tensor)
964
@_register_kernel_internal(rotate, tv_tensors.Image)
965
def rotate_image(
966
    image: torch.Tensor,
967
    angle: float,
968
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
969
970
    expand: bool = False,
    center: Optional[List[float]] = None,
971
    fill: _FillTypeJIT = None,
972
) -> torch.Tensor:
973
974
    interpolation = _check_interpolation(interpolation)

975
976
    shape = image.shape
    num_channels, height, width = shape[-3:]
977

978
979
    center_f = [0.0, 0.0]
    if center is not None:
980
981
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [(c - s * 0.5) for c, s in zip(center, [width, height])]
982
983
984
985

    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
986

987
    if image.numel() > 0:
988
989
990
991
992
        image = image.reshape(-1, num_channels, height, width)

        _assert_grid_transform_inputs(image, matrix, interpolation.value, fill, ["nearest", "bilinear"])

        ow, oh = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
993
        dtype = image.dtype if torch.is_floating_point(image) else torch.float32
994
995
        theta = torch.tensor(matrix, dtype=dtype, device=image.device).reshape(1, 2, 3)
        grid = _affine_grid(theta, w=width, h=height, ow=ow, oh=oh)
996
        output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
997
998

        new_height, new_width = output.shape[-2:]
999
    else:
1000
1001
        output = image
        new_width, new_height = _compute_affine_output_size(matrix, width, height) if expand else (width, height)
1002

1003
    return output.reshape(shape[:-3] + (num_channels, new_height, new_width))
1004
1005


1006
@_register_kernel_internal(rotate, PIL.Image.Image)
1007
def _rotate_image_pil(
1008
    image: PIL.Image.Image,
1009
    angle: float,
1010
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1011
1012
    expand: bool = False,
    center: Optional[List[float]] = None,
1013
    fill: _FillTypeJIT = None,
1014
) -> PIL.Image.Image:
1015
1016
    interpolation = _check_interpolation(interpolation)

1017
    return _FP.rotate(
1018
        image, angle, interpolation=pil_modes_mapping[interpolation], expand=expand, fill=fill, center=center
1019
1020
1021
    )


1022
1023
def rotate_bounding_boxes(
    bounding_boxes: torch.Tensor,
1024
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1025
    canvas_size: Tuple[int, int],
1026
1027
1028
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1029
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1030
1031
    return _affine_bounding_boxes_with_expand(
        bounding_boxes,
1032
        format=format,
Philip Meier's avatar
Philip Meier committed
1033
        canvas_size=canvas_size,
1034
1035
1036
1037
1038
1039
1040
        angle=-angle,
        translate=[0.0, 0.0],
        scale=1.0,
        shear=[0.0, 0.0],
        center=center,
        expand=expand,
    )
1041
1042


1043
@_register_kernel_internal(rotate, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1044
def _rotate_bounding_boxes_dispatch(
1045
1046
    inpt: tv_tensors.BoundingBoxes, angle: float, expand: bool = False, center: Optional[List[float]] = None, **kwargs
) -> tv_tensors.BoundingBoxes:
1047
1048
1049
1050
1051
1052
1053
1054
    output, canvas_size = rotate_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        angle=angle,
        expand=expand,
        center=center,
    )
1055
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1056
1057


1058
1059
def rotate_mask(
    mask: torch.Tensor,
1060
1061
1062
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1063
    fill: _FillTypeJIT = None,
1064
) -> torch.Tensor:
1065
1066
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1067
1068
1069
1070
        needs_squeeze = True
    else:
        needs_squeeze = False

1071
    output = rotate_image(
1072
        mask,
1073
1074
1075
        angle=angle,
        expand=expand,
        interpolation=InterpolationMode.NEAREST,
1076
        fill=fill,
1077
1078
1079
        center=center,
    )

1080
1081
1082
1083
1084
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1085

1086
@_register_kernel_internal(rotate, tv_tensors.Mask, tv_tensor_wrapper=False)
1087
def _rotate_mask_dispatch(
1088
    inpt: tv_tensors.Mask,
1089
1090
1091
    angle: float,
    expand: bool = False,
    center: Optional[List[float]] = None,
1092
    fill: _FillTypeJIT = None,
1093
    **kwargs,
1094
) -> tv_tensors.Mask:
1095
    output = rotate_mask(inpt.as_subclass(torch.Tensor), angle=angle, expand=expand, fill=fill, center=center)
1096
    return tv_tensors.wrap(output, like=inpt)
1097
1098


1099
@_register_kernel_internal(rotate, tv_tensors.Video)
1100
1101
1102
def rotate_video(
    video: torch.Tensor,
    angle: float,
1103
    interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
1104
1105
    expand: bool = False,
    center: Optional[List[float]] = None,
1106
    fill: _FillTypeJIT = None,
1107
) -> torch.Tensor:
1108
    return rotate_image(video, angle, interpolation=interpolation, expand=expand, fill=fill, center=center)
1109
1110


1111
def pad(
1112
    inpt: torch.Tensor,
1113
1114
1115
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
    padding_mode: str = "constant",
1116
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1117
    """[BETA] See :class:`~torchvision.transforms.v2.Pad` for details."""
1118
    if torch.jit.is_scripting():
1119
        return pad_image(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1120

1121
    _log_api_usage_once(pad)
1122

1123
1124
    kernel = _get_kernel(pad, type(inpt))
    return kernel(inpt, padding=padding, fill=fill, padding_mode=padding_mode)
1125
1126


1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
def _parse_pad_padding(padding: Union[int, List[int]]) -> List[int]:
    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif isinstance(padding, (tuple, list)):
        if len(padding) == 1:
            pad_left = pad_right = pad_top = pad_bottom = padding[0]
        elif len(padding) == 2:
            pad_left = pad_right = padding[0]
            pad_top = pad_bottom = padding[1]
        elif len(padding) == 4:
            pad_left = padding[0]
            pad_top = padding[1]
            pad_right = padding[2]
            pad_bottom = padding[3]
        else:
            raise ValueError(
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
            )
    else:
        raise TypeError(f"`padding` should be an integer or tuple or list of integers, but got {padding}")

    return [pad_left, pad_right, pad_top, pad_bottom]
1149

1150

1151
@_register_kernel_internal(pad, torch.Tensor)
1152
@_register_kernel_internal(pad, tv_tensors.Image)
1153
def pad_image(
1154
    image: torch.Tensor,
1155
1156
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1157
1158
    padding_mode: str = "constant",
) -> torch.Tensor:
1159
    # Be aware that while `padding` has order `[left, top, right, bottom]`, `torch_padding` uses
1160
1161
1162
1163
    # `[left, right, top, bottom]`. This stems from the fact that we align our API with PIL, but need to use `torch_pad`
    # internally.
    torch_padding = _parse_pad_padding(padding)

1164
    if padding_mode not in ("constant", "edge", "reflect", "symmetric"):
1165
1166
1167
1168
1169
        raise ValueError(
            f"`padding_mode` should be either `'constant'`, `'edge'`, `'reflect'` or `'symmetric'`, "
            f"but got `'{padding_mode}'`."
        )

1170
    if fill is None:
1171
1172
1173
1174
1175
1176
        fill = 0

    if isinstance(fill, (int, float)):
        return _pad_with_scalar_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
    elif len(fill) == 1:
        return _pad_with_scalar_fill(image, torch_padding, fill=fill[0], padding_mode=padding_mode)
1177
    else:
1178
        return _pad_with_vector_fill(image, torch_padding, fill=fill, padding_mode=padding_mode)
1179
1180
1181


def _pad_with_scalar_fill(
1182
    image: torch.Tensor,
1183
1184
1185
    torch_padding: List[int],
    fill: Union[int, float],
    padding_mode: str,
1186
) -> torch.Tensor:
1187
1188
    shape = image.shape
    num_channels, height, width = shape[-3:]
1189

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
    batch_size = 1
    for s in shape[:-3]:
        batch_size *= s

    image = image.reshape(batch_size, num_channels, height, width)

    if padding_mode == "edge":
        # Similar to the padding order, `torch_pad`'s PIL's padding modes don't have the same names. Thus, we map
        # the PIL name for the padding mode, which we are also using for our API, to the corresponding `torch_pad`
        # name.
        padding_mode = "replicate"

    if padding_mode == "constant":
        image = torch_pad(image, torch_padding, mode=padding_mode, value=float(fill))
    elif padding_mode in ("reflect", "replicate"):
        # `torch_pad` only supports `"reflect"` or `"replicate"` padding for floating point inputs.
        # TODO: See https://github.com/pytorch/pytorch/issues/40763
        dtype = image.dtype
        if not image.is_floating_point():
            needs_cast = True
            image = image.to(torch.float32)
        else:
            needs_cast = False
1213

1214
1215
1216
1217
1218
        image = torch_pad(image, torch_padding, mode=padding_mode)

        if needs_cast:
            image = image.to(dtype)
    else:  # padding_mode == "symmetric"
1219
        image = _pad_symmetric(image, torch_padding)
1220
1221

    new_height, new_width = image.shape[-2:]
1222

1223
    return image.reshape(shape[:-3] + (num_channels, new_height, new_width))
1224
1225


1226
# TODO: This should be removed once torch_pad supports non-scalar padding values
1227
def _pad_with_vector_fill(
1228
    image: torch.Tensor,
1229
    torch_padding: List[int],
1230
    fill: List[float],
1231
    padding_mode: str,
1232
1233
1234
1235
) -> torch.Tensor:
    if padding_mode != "constant":
        raise ValueError(f"Padding mode '{padding_mode}' is not supported if fill is not scalar")

1236
1237
    output = _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    left, right, top, bottom = torch_padding
1238
    fill = torch.tensor(fill, dtype=image.dtype, device=image.device).reshape(-1, 1, 1)
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

    if top > 0:
        output[..., :top, :] = fill
    if left > 0:
        output[..., :, :left] = fill
    if bottom > 0:
        output[..., -bottom:, :] = fill
    if right > 0:
        output[..., :, -right:] = fill
    return output


1251
_pad_image_pil = _register_kernel_internal(pad, PIL.Image.Image)(_FP.pad)
1252
1253


1254
@_register_kernel_internal(pad, tv_tensors.Mask)
1255
1256
def pad_mask(
    mask: torch.Tensor,
1257
1258
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1259
1260
    padding_mode: str = "constant",
) -> torch.Tensor:
1261
1262
1263
    if fill is None:
        fill = 0

1264
    if isinstance(fill, (tuple, list)):
1265
1266
        raise ValueError("Non-scalar fill value is not supported")

1267
1268
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1269
1270
1271
1272
        needs_squeeze = True
    else:
        needs_squeeze = False

1273
    output = pad_image(mask, padding=padding, fill=fill, padding_mode=padding_mode)
1274
1275
1276
1277
1278

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1279
1280


1281
1282
def pad_bounding_boxes(
    bounding_boxes: torch.Tensor,
1283
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1284
    canvas_size: Tuple[int, int],
1285
    padding: List[int],
vfdev's avatar
vfdev committed
1286
    padding_mode: str = "constant",
1287
) -> Tuple[torch.Tensor, Tuple[int, int]]:
vfdev's avatar
vfdev committed
1288
1289
1290
1291
    if padding_mode not in ["constant"]:
        # TODO: add support of other padding modes
        raise ValueError(f"Padding mode '{padding_mode}' is not supported with bounding boxes")

1292
    left, right, top, bottom = _parse_pad_padding(padding)
1293

1294
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1295
1296
1297
        pad = [left, top, left, top]
    else:
        pad = [left, top, 0, 0]
1298
    bounding_boxes = bounding_boxes + torch.tensor(pad, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
1299

Philip Meier's avatar
Philip Meier committed
1300
    height, width = canvas_size
1301
1302
    height += top + bottom
    width += left + right
Philip Meier's avatar
Philip Meier committed
1303
    canvas_size = (height, width)
1304

Philip Meier's avatar
Philip Meier committed
1305
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1306
1307


1308
@_register_kernel_internal(pad, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1309
def _pad_bounding_boxes_dispatch(
1310
1311
    inpt: tv_tensors.BoundingBoxes, padding: List[int], padding_mode: str = "constant", **kwargs
) -> tv_tensors.BoundingBoxes:
1312
1313
1314
1315
1316
1317
1318
    output, canvas_size = pad_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        padding=padding,
        padding_mode=padding_mode,
    )
1319
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1320
1321


1322
@_register_kernel_internal(pad, tv_tensors.Video)
1323
1324
def pad_video(
    video: torch.Tensor,
1325
1326
    padding: List[int],
    fill: Optional[Union[int, float, List[float]]] = None,
1327
1328
    padding_mode: str = "constant",
) -> torch.Tensor:
1329
    return pad_image(video, padding, fill=fill, padding_mode=padding_mode)
1330
1331


1332
def crop(inpt: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1333
    """[BETA] See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1334
    if torch.jit.is_scripting():
1335
        return crop_image(inpt, top=top, left=left, height=height, width=width)
1336
1337

    _log_api_usage_once(crop)
1338

1339
1340
    kernel = _get_kernel(crop, type(inpt))
    return kernel(inpt, top=top, left=left, height=height, width=width)
1341

1342
1343

@_register_kernel_internal(crop, torch.Tensor)
1344
@_register_kernel_internal(crop, tv_tensors.Image)
1345
def crop_image(image: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    h, w = image.shape[-2:]

    right = left + width
    bottom = top + height

    if left < 0 or top < 0 or right > w or bottom > h:
        image = image[..., max(top, 0) : bottom, max(left, 0) : right]
        torch_padding = [
            max(min(right, 0) - left, 0),
            max(right - max(w, left), 0),
            max(min(bottom, 0) - top, 0),
            max(bottom - max(h, top), 0),
        ]
        return _pad_with_scalar_fill(image, torch_padding, fill=0, padding_mode="constant")
    return image[..., top:bottom, left:right]


1363
1364
_crop_image_pil = _FP.crop
_register_kernel_internal(crop, PIL.Image.Image)(_crop_image_pil)
1365
1366


1367
1368
def crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
1369
    format: tv_tensors.BoundingBoxFormat,
1370
1371
    top: int,
    left: int,
1372
1373
1374
    height: int,
    width: int,
) -> Tuple[torch.Tensor, Tuple[int, int]]:
1375

1376
    # Crop or implicit pad if left and/or top have negative values:
1377
    if format == tv_tensors.BoundingBoxFormat.XYXY:
1378
        sub = [left, top, left, top]
1379
    else:
1380
1381
        sub = [left, top, 0, 0]

1382
    bounding_boxes = bounding_boxes - torch.tensor(sub, dtype=bounding_boxes.dtype, device=bounding_boxes.device)
Philip Meier's avatar
Philip Meier committed
1383
    canvas_size = (height, width)
1384

Philip Meier's avatar
Philip Meier committed
1385
    return clamp_bounding_boxes(bounding_boxes, format=format, canvas_size=canvas_size), canvas_size
1386
1387


1388
@_register_kernel_internal(crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1389
def _crop_bounding_boxes_dispatch(
1390
1391
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int
) -> tv_tensors.BoundingBoxes:
1392
1393
1394
    output, canvas_size = crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width
    )
1395
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
1396
1397


1398
@_register_kernel_internal(crop, tv_tensors.Mask)
1399
def crop_mask(mask: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1400
1401
1402
1403
1404
1405
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
        needs_squeeze = True
    else:
        needs_squeeze = False

1406
    output = crop_image(mask, top, left, height, width)
1407
1408
1409
1410
1411

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1412
1413


1414
@_register_kernel_internal(crop, tv_tensors.Video)
1415
def crop_video(video: torch.Tensor, top: int, left: int, height: int, width: int) -> torch.Tensor:
1416
    return crop_image(video, top, left, height, width)
1417
1418


1419
def perspective(
1420
    inpt: torch.Tensor,
1421
1422
1423
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1424
    fill: _FillTypeJIT = None,
1425
    coefficients: Optional[List[float]] = None,
1426
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1427
    """[BETA] See :class:`~torchvision.transforms.v2.RandomPerspective` for details."""
1428
    if torch.jit.is_scripting():
1429
        return perspective_image(
1430
1431
1432
1433
1434
1435
            inpt,
            startpoints=startpoints,
            endpoints=endpoints,
            interpolation=interpolation,
            fill=fill,
            coefficients=coefficients,
1436
        )
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    _log_api_usage_once(perspective)

    kernel = _get_kernel(perspective, type(inpt))
    return kernel(
        inpt,
        startpoints=startpoints,
        endpoints=endpoints,
        interpolation=interpolation,
        fill=fill,
        coefficients=coefficients,
    )

1450

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
def _perspective_grid(coeffs: List[float], ow: int, oh: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
    # https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/
    # src/libImaging/Geometry.c#L394

    #
    # x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #
    theta1 = torch.tensor(
        [[[coeffs[0], coeffs[1], coeffs[2]], [coeffs[3], coeffs[4], coeffs[5]]]], dtype=dtype, device=device
    )
    theta2 = torch.tensor([[[coeffs[6], coeffs[7], 1.0], [coeffs[6], coeffs[7], 1.0]]], dtype=dtype, device=device)

    d = 0.5
    base_grid = torch.empty(1, oh, ow, 3, dtype=dtype, device=device)
1466
    x_grid = torch.linspace(d, ow + d - 1.0, steps=ow, device=device, dtype=dtype)
1467
    base_grid[..., 0].copy_(x_grid)
1468
    y_grid = torch.linspace(d, oh + d - 1.0, steps=oh, device=device, dtype=dtype).unsqueeze_(-1)
1469
1470
1471
1472
    base_grid[..., 1].copy_(y_grid)
    base_grid[..., 2].fill_(1)

    rescaled_theta1 = theta1.transpose(1, 2).div_(torch.tensor([0.5 * ow, 0.5 * oh], dtype=dtype, device=device))
1473
1474
1475
    shape = (1, oh * ow, 3)
    output_grid1 = base_grid.view(shape).bmm(rescaled_theta1)
    output_grid2 = base_grid.view(shape).bmm(theta2.transpose(1, 2))
1476
1477
1478
1479
1480

    output_grid = output_grid1.div_(output_grid2).sub_(1.0)
    return output_grid.view(1, oh, ow, 2)


1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
def _perspective_coefficients(
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]],
) -> List[float]:
    if coefficients is not None:
        if startpoints is not None and endpoints is not None:
            raise ValueError("The startpoints/endpoints and the coefficients shouldn't be defined concurrently.")
        elif len(coefficients) != 8:
            raise ValueError("Argument coefficients should have 8 float values")
        return coefficients
    elif startpoints is not None and endpoints is not None:
        return _get_perspective_coeffs(startpoints, endpoints)
    else:
        raise ValueError("Either the startpoints/endpoints or the coefficients must have non `None` values.")


1498
@_register_kernel_internal(perspective, torch.Tensor)
1499
@_register_kernel_internal(perspective, tv_tensors.Image)
1500
def perspective_image(
1501
    image: torch.Tensor,
1502
1503
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1504
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1505
    fill: _FillTypeJIT = None,
1506
    coefficients: Optional[List[float]] = None,
1507
) -> torch.Tensor:
1508
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1509
1510
    interpolation = _check_interpolation(interpolation)

1511
1512
1513
1514
    if image.numel() == 0:
        return image

    shape = image.shape
1515
    ndim = image.ndim
1516

1517
    if ndim > 4:
1518
        image = image.reshape((-1,) + shape[-3:])
1519
        needs_unsquash = True
1520
1521
1522
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1523
1524
1525
    else:
        needs_unsquash = False

1526
    _assert_grid_transform_inputs(
1527
1528
1529
1530
1531
1532
1533
1534
        image,
        matrix=None,
        interpolation=interpolation.value,
        fill=fill,
        supported_interpolation_modes=["nearest", "bilinear"],
        coeffs=perspective_coeffs,
    )

1535
    oh, ow = shape[-2:]
1536
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1537
    grid = _perspective_grid(perspective_coeffs, ow=ow, oh=oh, dtype=dtype, device=image.device)
1538
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1539
1540

    if needs_unsquash:
1541
        output = output.reshape(shape)
1542
1543

    return output
1544
1545


1546
@_register_kernel_internal(perspective, PIL.Image.Image)
1547
def _perspective_image_pil(
1548
    image: PIL.Image.Image,
1549
1550
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1551
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BICUBIC,
1552
    fill: _FillTypeJIT = None,
1553
    coefficients: Optional[List[float]] = None,
1554
) -> PIL.Image.Image:
1555
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1556
    interpolation = _check_interpolation(interpolation)
1557
    return _FP.perspective(image, perspective_coeffs, interpolation=pil_modes_mapping[interpolation], fill=fill)
1558
1559


1560
1561
def perspective_bounding_boxes(
    bounding_boxes: torch.Tensor,
1562
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1563
    canvas_size: Tuple[int, int],
1564
1565
1566
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
1567
) -> torch.Tensor:
1568
1569
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1570

1571
    perspective_coeffs = _perspective_coefficients(startpoints, endpoints, coefficients)
1572

1573
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1574
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1575
    bounding_boxes = (
1576
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1577
    ).reshape(-1, 4)
1578

1579
1580
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
    device = bounding_boxes.device
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

    # perspective_coeffs are computed as endpoint -> start point
    # We have to invert perspective_coeffs for bboxes:
    # (x, y) - end point and (x_out, y_out) - start point
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)
    # and we would like to get:
    # x = (inv_coeffs[0] * x_out + inv_coeffs[1] * y_out + inv_coeffs[2])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # y = (inv_coeffs[3] * x_out + inv_coeffs[4] * y_out + inv_coeffs[5])
    #       / (inv_coeffs[6] * x_out + inv_coeffs[7] * y_out + 1)
    # and compute inv_coeffs in terms of coeffs

    denom = perspective_coeffs[0] * perspective_coeffs[4] - perspective_coeffs[1] * perspective_coeffs[3]
    if denom == 0:
        raise RuntimeError(
            f"Provided perspective_coeffs {perspective_coeffs} can not be inverted to transform bounding boxes. "
            f"Denominator is zero, denom={denom}"
        )

    inv_coeffs = [
        (perspective_coeffs[4] - perspective_coeffs[5] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[1] + perspective_coeffs[2] * perspective_coeffs[7]) / denom,
        (perspective_coeffs[1] * perspective_coeffs[5] - perspective_coeffs[2] * perspective_coeffs[4]) / denom,
        (-perspective_coeffs[3] + perspective_coeffs[5] * perspective_coeffs[6]) / denom,
        (perspective_coeffs[0] - perspective_coeffs[2] * perspective_coeffs[6]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[5] + perspective_coeffs[2] * perspective_coeffs[3]) / denom,
        (-perspective_coeffs[4] * perspective_coeffs[6] + perspective_coeffs[3] * perspective_coeffs[7]) / denom,
        (-perspective_coeffs[0] * perspective_coeffs[7] + perspective_coeffs[1] * perspective_coeffs[6]) / denom,
    ]

1612
1613
    theta1 = torch.tensor(
        [[inv_coeffs[0], inv_coeffs[1], inv_coeffs[2]], [inv_coeffs[3], inv_coeffs[4], inv_coeffs[5]]],
1614
1615
1616
1617
        dtype=dtype,
        device=device,
    )

1618
1619
1620
1621
    theta2 = torch.tensor(
        [[inv_coeffs[6], inv_coeffs[7], 1.0], [inv_coeffs[6], inv_coeffs[7], 1.0]], dtype=dtype, device=device
    )

1622
1623
1624
1625
    # 1) Let's transform bboxes into a tensor of 4 points (top-left, top-right, bottom-left, bottom-right corners).
    # Tensor of points has shape (N * 4, 3), where N is the number of bboxes
    # Single point structure is similar to
    # [(xmin, ymin, 1), (xmax, ymin, 1), (xmax, ymax, 1), (xmin, ymax, 1)]
1626
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1627
1628
1629
1630
1631
    points = torch.cat([points, torch.ones(points.shape[0], 1, device=points.device)], dim=-1)
    # 2) Now let's transform the points using perspective matrices
    #   x_out = (coeffs[0] * x + coeffs[1] * y + coeffs[2]) / (coeffs[6] * x + coeffs[7] * y + 1)
    #   y_out = (coeffs[3] * x + coeffs[4] * y + coeffs[5]) / (coeffs[6] * x + coeffs[7] * y + 1)

1632
1633
    numer_points = torch.matmul(points, theta1.T)
    denom_points = torch.matmul(points, theta2.T)
1634
    transformed_points = numer_points.div_(denom_points)
1635
1636
1637

    # 3) Reshape transformed points to [N boxes, 4 points, x/y coords]
    # and compute bounding box from 4 transformed points:
1638
    transformed_points = transformed_points.reshape(-1, 4, 2)
1639
1640
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)

1641
1642
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1643
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1644
        canvas_size=canvas_size,
1645
    )
1646
1647
1648

    # out_bboxes should be of shape [N boxes, 4]

Nicolas Hug's avatar
Nicolas Hug committed
1649
    return convert_bounding_box_format(
1650
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1651
    ).reshape(original_shape)
1652
1653


1654
@_register_kernel_internal(perspective, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1655
def _perspective_bounding_boxes_dispatch(
1656
    inpt: tv_tensors.BoundingBoxes,
1657
1658
1659
1660
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
    coefficients: Optional[List[float]] = None,
    **kwargs,
1661
) -> tv_tensors.BoundingBoxes:
1662
1663
1664
1665
1666
1667
1668
1669
    output = perspective_bounding_boxes(
        inpt.as_subclass(torch.Tensor),
        format=inpt.format,
        canvas_size=inpt.canvas_size,
        startpoints=startpoints,
        endpoints=endpoints,
        coefficients=coefficients,
    )
1670
    return tv_tensors.wrap(output, like=inpt)
1671
1672


1673
1674
def perspective_mask(
    mask: torch.Tensor,
1675
1676
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1677
    fill: _FillTypeJIT = None,
1678
    coefficients: Optional[List[float]] = None,
1679
) -> torch.Tensor:
1680
1681
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1682
1683
1684
1685
        needs_squeeze = True
    else:
        needs_squeeze = False

1686
    output = perspective_image(
1687
        mask, startpoints, endpoints, interpolation=InterpolationMode.NEAREST, fill=fill, coefficients=coefficients
1688
    )
1689

1690
1691
1692
1693
1694
    if needs_squeeze:
        output = output.squeeze(0)

    return output

1695

1696
@_register_kernel_internal(perspective, tv_tensors.Mask, tv_tensor_wrapper=False)
1697
def _perspective_mask_dispatch(
1698
    inpt: tv_tensors.Mask,
1699
1700
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1701
    fill: _FillTypeJIT = None,
1702
1703
    coefficients: Optional[List[float]] = None,
    **kwargs,
1704
) -> tv_tensors.Mask:
1705
1706
1707
1708
1709
1710
1711
    output = perspective_mask(
        inpt.as_subclass(torch.Tensor),
        startpoints=startpoints,
        endpoints=endpoints,
        fill=fill,
        coefficients=coefficients,
    )
1712
    return tv_tensors.wrap(output, like=inpt)
1713
1714


1715
@_register_kernel_internal(perspective, tv_tensors.Video)
1716
1717
def perspective_video(
    video: torch.Tensor,
1718
1719
    startpoints: Optional[List[List[int]]],
    endpoints: Optional[List[List[int]]],
1720
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1721
    fill: _FillTypeJIT = None,
1722
    coefficients: Optional[List[float]] = None,
1723
) -> torch.Tensor:
1724
    return perspective_image(
1725
1726
        video, startpoints, endpoints, interpolation=interpolation, fill=fill, coefficients=coefficients
    )
1727
1728


1729
def elastic(
1730
    inpt: torch.Tensor,
1731
    displacement: torch.Tensor,
1732
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1733
1734
    fill: _FillTypeJIT = None,
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1735
    """[BETA] See :class:`~torchvision.transforms.v2.ElasticTransform` for details."""
1736
    if torch.jit.is_scripting():
1737
        return elastic_image(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1738
1739
1740
1741
1742

    _log_api_usage_once(elastic)

    kernel = _get_kernel(elastic, type(inpt))
    return kernel(inpt, displacement=displacement, interpolation=interpolation, fill=fill)
1743
1744


1745
1746
1747
elastic_transform = elastic


1748
@_register_kernel_internal(elastic, torch.Tensor)
1749
@_register_kernel_internal(elastic, tv_tensors.Image)
1750
def elastic_image(
1751
    image: torch.Tensor,
1752
    displacement: torch.Tensor,
1753
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1754
    fill: _FillTypeJIT = None,
1755
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1756
1757
1758
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")

1759
1760
    interpolation = _check_interpolation(interpolation)

1761
1762
1763
1764
    if image.numel() == 0:
        return image

    shape = image.shape
1765
    ndim = image.ndim
1766

1767
    device = image.device
1768
    dtype = image.dtype if torch.is_floating_point(image) else torch.float32
1769
1770
1771
1772
1773
1774
1775

    # Patch: elastic transform should support (cpu,f16) input
    is_cpu_half = device.type == "cpu" and dtype == torch.float16
    if is_cpu_half:
        image = image.to(torch.float32)
        dtype = torch.float32

1776
1777
1778
    # We are aware that if input image dtype is uint8 and displacement is float64 then
    # displacement will be casted to float32 and all computations will be done with float32
    # We can fix this later if needed
1779

1780
1781
1782
1783
    expected_shape = (1,) + shape[-2:] + (2,)
    if expected_shape != displacement.shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1784
    if ndim > 4:
1785
        image = image.reshape((-1,) + shape[-3:])
1786
        needs_unsquash = True
1787
1788
1789
    elif ndim == 3:
        image = image.unsqueeze(0)
        needs_unsquash = True
1790
1791
1792
    else:
        needs_unsquash = False

1793
1794
    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1795

1796
1797
1798
    image_height, image_width = shape[-2:]
    grid = _create_identity_grid((image_height, image_width), device=device, dtype=dtype).add_(displacement)
    output = _apply_grid_transform(image, grid, interpolation.value, fill=fill)
1799
1800

    if needs_unsquash:
1801
        output = output.reshape(shape)
1802

1803
1804
1805
    if is_cpu_half:
        output = output.to(torch.float16)

1806
    return output
1807
1808


1809
@_register_kernel_internal(elastic, PIL.Image.Image)
1810
def _elastic_image_pil(
1811
    image: PIL.Image.Image,
1812
    displacement: torch.Tensor,
1813
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1814
    fill: _FillTypeJIT = None,
1815
) -> PIL.Image.Image:
1816
    t_img = pil_to_tensor(image)
1817
    output = elastic_image(t_img, displacement, interpolation=interpolation, fill=fill)
1818
    return to_pil_image(output, mode=image.mode)
1819
1820


1821
def _create_identity_grid(size: Tuple[int, int], device: torch.device, dtype: torch.dtype) -> torch.Tensor:
1822
    sy, sx = size
1823
1824
    base_grid = torch.empty(1, sy, sx, 2, device=device, dtype=dtype)
    x_grid = torch.linspace((-sx + 1) / sx, (sx - 1) / sx, sx, device=device, dtype=dtype)
1825
1826
    base_grid[..., 0].copy_(x_grid)

1827
    y_grid = torch.linspace((-sy + 1) / sy, (sy - 1) / sy, sy, device=device, dtype=dtype).unsqueeze_(-1)
1828
1829
1830
1831
1832
    base_grid[..., 1].copy_(y_grid)

    return base_grid


1833
1834
def elastic_bounding_boxes(
    bounding_boxes: torch.Tensor,
1835
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
1836
    canvas_size: Tuple[int, int],
1837
1838
    displacement: torch.Tensor,
) -> torch.Tensor:
Philip Meier's avatar
Philip Meier committed
1839
1840
1841
1842
1843
1844
    expected_shape = (1, canvas_size[0], canvas_size[1], 2)
    if not isinstance(displacement, torch.Tensor):
        raise TypeError("Argument displacement should be a Tensor")
    elif displacement.shape != expected_shape:
        raise ValueError(f"Argument displacement shape should be {expected_shape}, but given {displacement.shape}")

1845
1846
    if bounding_boxes.numel() == 0:
        return bounding_boxes
1847

1848
    # TODO: add in docstring about approximation we are doing for grid inversion
1849
1850
    device = bounding_boxes.device
    dtype = bounding_boxes.dtype if torch.is_floating_point(bounding_boxes) else torch.float32
1851
1852
1853

    if displacement.dtype != dtype or displacement.device != device:
        displacement = displacement.to(dtype=dtype, device=device)
1854

1855
    original_shape = bounding_boxes.shape
Nicolas Hug's avatar
Nicolas Hug committed
1856
    # TODO: first cast to float if bbox is int64 before convert_bounding_box_format
1857
    bounding_boxes = (
1858
        convert_bounding_box_format(bounding_boxes, old_format=format, new_format=tv_tensors.BoundingBoxFormat.XYXY)
1859
    ).reshape(-1, 4)
1860

Philip Meier's avatar
Philip Meier committed
1861
    id_grid = _create_identity_grid(canvas_size, device=device, dtype=dtype)
1862
1863
    # We construct an approximation of inverse grid as inv_grid = id_grid - displacement
    # This is not an exact inverse of the grid
1864
    inv_grid = id_grid.sub_(displacement)
1865
1866

    # Get points from bboxes
1867
    points = bounding_boxes[:, [[0, 1], [2, 1], [2, 3], [0, 3]]].reshape(-1, 2)
1868
1869
1870
1871
1872
    if points.is_floating_point():
        points = points.ceil_()
    index_xy = points.to(dtype=torch.long)
    index_x, index_y = index_xy[:, 0], index_xy[:, 1]

1873
    # Transform points:
Philip Meier's avatar
Philip Meier committed
1874
    t_size = torch.tensor(canvas_size[::-1], device=displacement.device, dtype=displacement.dtype)
1875
    transformed_points = inv_grid[0, index_y, index_x, :].add_(1).mul_(0.5 * t_size).sub_(0.5)
1876

1877
    transformed_points = transformed_points.reshape(-1, 4, 2)
1878
    out_bbox_mins, out_bbox_maxs = torch.aminmax(transformed_points, dim=1)
1879
1880
    out_bboxes = clamp_bounding_boxes(
        torch.cat([out_bbox_mins, out_bbox_maxs], dim=1).to(bounding_boxes.dtype),
1881
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1882
        canvas_size=canvas_size,
1883
    )
1884

Nicolas Hug's avatar
Nicolas Hug committed
1885
    return convert_bounding_box_format(
1886
        out_bboxes, old_format=tv_tensors.BoundingBoxFormat.XYXY, new_format=format, inplace=True
1887
    ).reshape(original_shape)
1888
1889


1890
@_register_kernel_internal(elastic, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
1891
def _elastic_bounding_boxes_dispatch(
1892
1893
    inpt: tv_tensors.BoundingBoxes, displacement: torch.Tensor, **kwargs
) -> tv_tensors.BoundingBoxes:
1894
1895
1896
    output = elastic_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, displacement=displacement
    )
1897
    return tv_tensors.wrap(output, like=inpt)
1898
1899


1900
1901
1902
def elastic_mask(
    mask: torch.Tensor,
    displacement: torch.Tensor,
1903
    fill: _FillTypeJIT = None,
1904
) -> torch.Tensor:
1905
1906
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
1907
1908
1909
1910
        needs_squeeze = True
    else:
        needs_squeeze = False

1911
    output = elastic_image(mask, displacement=displacement, interpolation=InterpolationMode.NEAREST, fill=fill)
1912
1913
1914
1915
1916

    if needs_squeeze:
        output = output.squeeze(0)

    return output
1917
1918


1919
@_register_kernel_internal(elastic, tv_tensors.Mask, tv_tensor_wrapper=False)
1920
def _elastic_mask_dispatch(
1921
1922
    inpt: tv_tensors.Mask, displacement: torch.Tensor, fill: _FillTypeJIT = None, **kwargs
) -> tv_tensors.Mask:
1923
    output = elastic_mask(inpt.as_subclass(torch.Tensor), displacement=displacement, fill=fill)
1924
    return tv_tensors.wrap(output, like=inpt)
1925
1926


1927
@_register_kernel_internal(elastic, tv_tensors.Video)
1928
1929
1930
def elastic_video(
    video: torch.Tensor,
    displacement: torch.Tensor,
1931
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1932
    fill: _FillTypeJIT = None,
1933
) -> torch.Tensor:
1934
    return elastic_image(video, displacement, interpolation=interpolation, fill=fill)
1935
1936


1937
def center_crop(inpt: torch.Tensor, output_size: List[int]) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
1938
    """[BETA] See :class:`~torchvision.transforms.v2.RandomCrop` for details."""
1939
    if torch.jit.is_scripting():
1940
        return center_crop_image(inpt, output_size=output_size)
1941
1942
1943
1944
1945

    _log_api_usage_once(center_crop)

    kernel = _get_kernel(center_crop, type(inpt))
    return kernel(inpt, output_size=output_size)
1946
1947


1948
1949
def _center_crop_parse_output_size(output_size: List[int]) -> List[int]:
    if isinstance(output_size, numbers.Number):
1950
1951
        s = int(output_size)
        return [s, s]
1952
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
1953
        return [output_size[0], output_size[0]]
1954
1955
    else:
        return list(output_size)
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974


def _center_crop_compute_padding(crop_height: int, crop_width: int, image_height: int, image_width: int) -> List[int]:
    return [
        (crop_width - image_width) // 2 if crop_width > image_width else 0,
        (crop_height - image_height) // 2 if crop_height > image_height else 0,
        (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
        (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
    ]


def _center_crop_compute_crop_anchor(
    crop_height: int, crop_width: int, image_height: int, image_width: int
) -> Tuple[int, int]:
    crop_top = int(round((image_height - crop_height) / 2.0))
    crop_left = int(round((image_width - crop_width) / 2.0))
    return crop_top, crop_left


1975
@_register_kernel_internal(center_crop, torch.Tensor)
1976
@_register_kernel_internal(center_crop, tv_tensors.Image)
1977
def center_crop_image(image: torch.Tensor, output_size: List[int]) -> torch.Tensor:
1978
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1979
1980
1981
1982
    shape = image.shape
    if image.numel() == 0:
        return image.reshape(shape[:-2] + (crop_height, crop_width))
    image_height, image_width = shape[-2:]
1983
1984
1985

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
1986
        image = torch_pad(image, _parse_pad_padding(padding_ltrb), value=0.0)
1987

1988
        image_height, image_width = image.shape[-2:]
1989
        if crop_width == image_width and crop_height == image_height:
1990
            return image
1991
1992

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
1993
    return image[..., crop_top : (crop_top + crop_height), crop_left : (crop_left + crop_width)]
1994
1995


1996
@_register_kernel_internal(center_crop, PIL.Image.Image)
1997
def _center_crop_image_pil(image: PIL.Image.Image, output_size: List[int]) -> PIL.Image.Image:
1998
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
1999
    image_height, image_width = _get_size_image_pil(image)
2000
2001
2002

    if crop_height > image_height or crop_width > image_width:
        padding_ltrb = _center_crop_compute_padding(crop_height, crop_width, image_height, image_width)
2003
        image = _pad_image_pil(image, padding_ltrb, fill=0)
2004

2005
        image_height, image_width = _get_size_image_pil(image)
2006
        if crop_width == image_width and crop_height == image_height:
2007
            return image
2008
2009

    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, image_height, image_width)
2010
    return _crop_image_pil(image, crop_top, crop_left, crop_height, crop_width)
2011
2012


2013
2014
def center_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2015
    format: tv_tensors.BoundingBoxFormat,
Philip Meier's avatar
Philip Meier committed
2016
    canvas_size: Tuple[int, int],
2017
    output_size: List[int],
2018
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2019
    crop_height, crop_width = _center_crop_parse_output_size(output_size)
Philip Meier's avatar
Philip Meier committed
2020
    crop_top, crop_left = _center_crop_compute_crop_anchor(crop_height, crop_width, *canvas_size)
2021
2022
2023
    return crop_bounding_boxes(
        bounding_boxes, format, top=crop_top, left=crop_left, height=crop_height, width=crop_width
    )
2024
2025


2026
@_register_kernel_internal(center_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2027
def _center_crop_bounding_boxes_dispatch(
2028
2029
    inpt: tv_tensors.BoundingBoxes, output_size: List[int]
) -> tv_tensors.BoundingBoxes:
2030
2031
2032
    output, canvas_size = center_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, canvas_size=inpt.canvas_size, output_size=output_size
    )
2033
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2034
2035


2036
@_register_kernel_internal(center_crop, tv_tensors.Mask)
2037
2038
2039
def center_crop_mask(mask: torch.Tensor, output_size: List[int]) -> torch.Tensor:
    if mask.ndim < 3:
        mask = mask.unsqueeze(0)
2040
2041
2042
2043
        needs_squeeze = True
    else:
        needs_squeeze = False

2044
    output = center_crop_image(image=mask, output_size=output_size)
2045
2046
2047
2048
2049

    if needs_squeeze:
        output = output.squeeze(0)

    return output
2050
2051


2052
@_register_kernel_internal(center_crop, tv_tensors.Video)
2053
def center_crop_video(video: torch.Tensor, output_size: List[int]) -> torch.Tensor:
2054
    return center_crop_image(video, output_size)
2055
2056


2057
def resized_crop(
2058
    inpt: torch.Tensor,
2059
2060
2061
2062
2063
2064
2065
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
2066
) -> torch.Tensor:
Nicolas Hug's avatar
Nicolas Hug committed
2067
    """[BETA] See :class:`~torchvision.transforms.v2.RandomResizedCrop` for details."""
2068
    if torch.jit.is_scripting():
2069
        return resized_crop_image(
2070
2071
2072
2073
2074
2075
2076
2077
            inpt,
            top=top,
            left=left,
            height=height,
            width=width,
            size=size,
            interpolation=interpolation,
            antialias=antialias,
2078
        )
2079

2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
    _log_api_usage_once(resized_crop)

    kernel = _get_kernel(resized_crop, type(inpt))
    return kernel(
        inpt,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
        antialias=antialias,
    )
2093

2094
2095

@_register_kernel_internal(resized_crop, torch.Tensor)
2096
@_register_kernel_internal(resized_crop, tv_tensors.Image)
2097
def resized_crop_image(
2098
    image: torch.Tensor,
2099
2100
2101
2102
2103
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2104
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2105
    antialias: Optional[Union[str, bool]] = "warn",
2106
) -> torch.Tensor:
2107
2108
    image = crop_image(image, top, left, height, width)
    return resize_image(image, size, interpolation=interpolation, antialias=antialias)
2109
2110


2111
def _resized_crop_image_pil(
2112
    image: PIL.Image.Image,
2113
2114
2115
2116
2117
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2118
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2119
) -> PIL.Image.Image:
2120
2121
    image = _crop_image_pil(image, top, left, height, width)
    return _resize_image_pil(image, size, interpolation=interpolation)
2122
2123


2124
@_register_kernel_internal(resized_crop, PIL.Image.Image)
2125
def _resized_crop_image_pil_dispatch(
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
    image: PIL.Image.Image,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
    antialias: Optional[Union[str, bool]] = "warn",
) -> PIL.Image.Image:
    if antialias is False:
        warnings.warn("Anti-alias option is always applied for PIL Image input. Argument antialias is ignored.")
2137
    return _resized_crop_image_pil(
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
        image,
        top=top,
        left=left,
        height=height,
        width=width,
        size=size,
        interpolation=interpolation,
    )


2148
2149
def resized_crop_bounding_boxes(
    bounding_boxes: torch.Tensor,
2150
    format: tv_tensors.BoundingBoxFormat,
2151
2152
2153
2154
2155
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2156
) -> Tuple[torch.Tensor, Tuple[int, int]]:
2157
2158
2159
2160
    bounding_boxes, canvas_size = crop_bounding_boxes(bounding_boxes, format, top, left, height, width)
    return resize_bounding_boxes(bounding_boxes, canvas_size=canvas_size, size=size)


2161
@_register_kernel_internal(resized_crop, tv_tensors.BoundingBoxes, tv_tensor_wrapper=False)
2162
def _resized_crop_bounding_boxes_dispatch(
2163
2164
    inpt: tv_tensors.BoundingBoxes, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.BoundingBoxes:
2165
2166
2167
    output, canvas_size = resized_crop_bounding_boxes(
        inpt.as_subclass(torch.Tensor), format=inpt.format, top=top, left=left, height=height, width=width, size=size
    )
2168
    return tv_tensors.wrap(output, like=inpt, canvas_size=canvas_size)
2169
2170


2171
def resized_crop_mask(
2172
2173
2174
2175
2176
2177
2178
    mask: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
) -> torch.Tensor:
2179
2180
    mask = crop_mask(mask, top, left, height, width)
    return resize_mask(mask, size)
2181
2182


2183
@_register_kernel_internal(resized_crop, tv_tensors.Mask, tv_tensor_wrapper=False)
2184
def _resized_crop_mask_dispatch(
2185
2186
    inpt: tv_tensors.Mask, top: int, left: int, height: int, width: int, size: List[int], **kwargs
) -> tv_tensors.Mask:
2187
2188
2189
    output = resized_crop_mask(
        inpt.as_subclass(torch.Tensor), top=top, left=left, height=height, width=width, size=size
    )
2190
    return tv_tensors.wrap(output, like=inpt)
2191
2192


2193
@_register_kernel_internal(resized_crop, tv_tensors.Video)
2194
2195
2196
2197
2198
2199
2200
def resized_crop_video(
    video: torch.Tensor,
    top: int,
    left: int,
    height: int,
    width: int,
    size: List[int],
2201
    interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
2202
    antialias: Optional[Union[str, bool]] = "warn",
2203
) -> torch.Tensor:
2204
    return resized_crop_image(
2205
2206
2207
2208
        video, top, left, height, width, antialias=antialias, size=size, interpolation=interpolation
    )


2209
def five_crop(
2210
2211
    inpt: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
Nicolas Hug's avatar
Nicolas Hug committed
2212
    """[BETA] See :class:`~torchvision.transforms.v2.FiveCrop` for details."""
2213
    if torch.jit.is_scripting():
2214
        return five_crop_image(inpt, size=size)
2215
2216
2217
2218
2219

    _log_api_usage_once(five_crop)

    kernel = _get_kernel(five_crop, type(inpt))
    return kernel(inpt, size=size)
2220
2221


2222
2223
def _parse_five_crop_size(size: List[int]) -> List[int]:
    if isinstance(size, numbers.Number):
2224
2225
        s = int(size)
        size = [s, s]
2226
    elif isinstance(size, (tuple, list)) and len(size) == 1:
2227
2228
        s = size[0]
        size = [s, s]
2229
2230
2231
2232
2233
2234
2235

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    return size


2236
@_register_five_ten_crop_kernel_internal(five_crop, torch.Tensor)
2237
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Image)
2238
def five_crop_image(
2239
    image: torch.Tensor, size: List[int]
2240
2241
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    crop_height, crop_width = _parse_five_crop_size(size)
2242
    image_height, image_width = image.shape[-2:]
2243
2244

    if crop_width > image_width or crop_height > image_height:
2245
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2246

2247
2248
2249
2250
2251
    tl = crop_image(image, 0, 0, crop_height, crop_width)
    tr = crop_image(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop_image(image, image_height - crop_height, 0, crop_height, crop_width)
    br = crop_image(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = center_crop_image(image, [crop_height, crop_width])
2252
2253
2254
2255

    return tl, tr, bl, br, center


2256
@_register_five_ten_crop_kernel_internal(five_crop, PIL.Image.Image)
2257
def _five_crop_image_pil(
2258
    image: PIL.Image.Image, size: List[int]
2259
2260
) -> Tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image]:
    crop_height, crop_width = _parse_five_crop_size(size)
2261
    image_height, image_width = _get_size_image_pil(image)
2262
2263

    if crop_width > image_width or crop_height > image_height:
2264
        raise ValueError(f"Requested crop size {size} is bigger than input size {(image_height, image_width)}")
2265

2266
2267
2268
2269
2270
    tl = _crop_image_pil(image, 0, 0, crop_height, crop_width)
    tr = _crop_image_pil(image, 0, image_width - crop_width, crop_height, crop_width)
    bl = _crop_image_pil(image, image_height - crop_height, 0, crop_height, crop_width)
    br = _crop_image_pil(image, image_height - crop_height, image_width - crop_width, crop_height, crop_width)
    center = _center_crop_image_pil(image, [crop_height, crop_width])
2271
2272
2273
2274

    return tl, tr, bl, br, center


2275
@_register_five_ten_crop_kernel_internal(five_crop, tv_tensors.Video)
2276
2277
2278
def five_crop_video(
    video: torch.Tensor, size: List[int]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2279
    return five_crop_image(video, size)
2280
2281


2282
def ten_crop(
2283
    inpt: torch.Tensor, size: List[int], vertical_flip: bool = False
2284
) -> Tuple[
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
2295
]:
Nicolas Hug's avatar
Nicolas Hug committed
2296
    """[BETA] See :class:`~torchvision.transforms.v2.TenCrop` for details."""
2297
    if torch.jit.is_scripting():
2298
        return ten_crop_image(inpt, size=size, vertical_flip=vertical_flip)
2299
2300
2301
2302
2303

    _log_api_usage_once(ten_crop)

    kernel = _get_kernel(ten_crop, type(inpt))
    return kernel(inpt, size=size, vertical_flip=vertical_flip)
2304
2305


2306
@_register_five_ten_crop_kernel_internal(ten_crop, torch.Tensor)
2307
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Image)
2308
def ten_crop_image(
Philip Meier's avatar
Philip Meier committed
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
    image: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2322
    non_flipped = five_crop_image(image, size)
2323
2324

    if vertical_flip:
2325
        image = vertical_flip_image(image)
2326
    else:
2327
        image = horizontal_flip_image(image)
2328

2329
    flipped = five_crop_image(image, size)
2330

Philip Meier's avatar
Philip Meier committed
2331
    return non_flipped + flipped
2332
2333


2334
@_register_five_ten_crop_kernel_internal(ten_crop, PIL.Image.Image)
2335
def _ten_crop_image_pil(
Philip Meier's avatar
Philip Meier committed
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
    image: PIL.Image.Image, size: List[int], vertical_flip: bool = False
) -> Tuple[
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
    PIL.Image.Image,
]:
2349
    non_flipped = _five_crop_image_pil(image, size)
2350
2351

    if vertical_flip:
2352
        image = _vertical_flip_image_pil(image)
2353
    else:
2354
        image = _horizontal_flip_image_pil(image)
2355

2356
    flipped = _five_crop_image_pil(image, size)
Philip Meier's avatar
Philip Meier committed
2357
2358
2359
2360

    return non_flipped + flipped


2361
@_register_five_ten_crop_kernel_internal(ten_crop, tv_tensors.Video)
Philip Meier's avatar
Philip Meier committed
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
def ten_crop_video(
    video: torch.Tensor, size: List[int], vertical_flip: bool = False
) -> Tuple[
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
    torch.Tensor,
]:
2376
    return ten_crop_image(video, size, vertical_flip=vertical_flip)