test_transforms_v2.py 49.8 KB
Newer Older
1
2
import itertools
import pathlib
3
import pickle
4
5
6
7
8
9
10
11
12
13
import random
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

14
from common_utils import assert_equal, cpu_and_cuda
15
16
17
18
19
from torch.utils._pytree import tree_flatten, tree_unflatten
from torchvision import datapoints
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
20
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
21
from transforms_v2_legacy_utils import (
22
23
24
25
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
26
    make_multiple_bounding_boxes,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
46
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
47
        yield bounding_boxes.data
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
69
        if isinstance(value, (datapoints.BoundingBoxes, datapoints.Mask)):
70
71
            # AA transforms don't support bounding boxes or masks
            continue
72
        elif check_type(value, (datapoints.Image, datapoints.Video, is_pure_tensor, PIL.Image.Image)):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
102
        elif check_type(value, (datapoints.Image, datapoints.Video, is_pure_tensor)):
103
            # normalize doesn't support integer images
104
            value = F.to_dtype(value, torch.float32, scale=True)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
125
            (transforms.RandomChannelPermutation(), None),
126
127
128
129
130
131
132
133
134
135
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
136
137
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
138
            (transforms.RandomRotation(degrees=30), None),
139
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
140
141
142
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
143
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
144
            (transforms.ClampBoundingBoxes(), None),
145
            (transforms.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.CXCYWH), None),
146
            (transforms.ConvertImageDtype(), None),
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
173
    @pytest.mark.parametrize("de_serialize", [lambda t: t, lambda t: pickle.loads(pickle.dumps(t))])
174
    @pytest.mark.parametrize("device", cpu_and_cuda())
175
176
177
    def test_common(self, transform, adapter, container_type, image_or_video, de_serialize, device):
        transform = de_serialize(transform)

Philip Meier's avatar
Philip Meier committed
178
        canvas_size = F.get_size(image_or_video)
179
180
        input = dict(
            image_or_video=image_or_video,
Philip Meier's avatar
Philip Meier committed
181
182
183
            image_datapoint=make_image(size=canvas_size),
            video_datapoint=make_video(size=canvas_size),
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
184
            bounding_boxes_xyxy=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
185
                format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
186
            ),
187
            bounding_boxes_xywh=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
188
                format=datapoints.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
189
            ),
190
            bounding_boxes_cxcywh=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
191
                format=datapoints.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
192
            ),
193
            bounding_boxes_degenerate_xyxy=datapoints.BoundingBoxes(
194
195
196
197
198
199
200
201
202
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
                format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
203
                canvas_size=canvas_size,
204
            ),
205
            bounding_boxes_degenerate_xywh=datapoints.BoundingBoxes(
206
207
208
209
210
211
212
213
214
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
215
                canvas_size=canvas_size,
216
            ),
217
            bounding_boxes_degenerate_cxcywh=datapoints.BoundingBoxes(
218
219
220
221
222
223
224
225
226
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
227
                canvas_size=canvas_size,
228
            ),
Philip Meier's avatar
Philip Meier committed
229
230
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

265
            if isinstance(input_item, datapoints.BoundingBoxes) and not isinstance(
266
267
268
269
270
271
272
273
274
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
        for format in list(datapoints.BoundingBoxFormat):
            sample = dict(
Philip Meier's avatar
Philip Meier committed
275
                boxes=datapoints.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
276
277
                labels=torch.tensor([3]),
            )
278
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
279
280
281
282
283
284
285
286
287
288
289
290
291

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
292
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.RandomResizedCrop([16, 16], antialias=True),
                itertools.chain(
                    make_images(extra_dims=[(4,)]),
                    make_vanilla_tensor_images(),
                    make_pil_images(),
                    make_videos(extra_dims=[()]),
                ),
            )
        ]
    )
    def test_random_resized_crop(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
361
362
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
363
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
364
365
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
366
        # 3. A list of all other items
367
        pure_tensors = []
368
369
370
371
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
372
373
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

389
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
390
391
392
393

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

394
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
395

396
    if first_pure_tensor_input is not None:
397
        if other_inputs:
398
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
399
        else:
400
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
401

402
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestPad:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
Philip Meier's avatar
Philip Meier committed
437
    def test__get_params(self, fill, side_range):
438
439
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

Philip Meier's avatar
Philip Meier committed
440
441
        h, w = size = (24, 32)
        image = make_image(size)
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h


class TestRandomCrop:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")

    @pytest.mark.parametrize("padding", [None, 1, [2, 3], [1, 2, 3, 4]])
    @pytest.mark.parametrize("size, pad_if_needed", [((10, 10), False), ((50, 25), True)])
Philip Meier's avatar
Philip Meier committed
471
472
473
    def test__get_params(self, padding, pad_if_needed, size):
        h, w = size = (24, 32)
        image = make_image(size)
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

        transform = transforms.RandomCrop(size, padding=padding, pad_if_needed=pad_if_needed)
        params = transform._get_params([image])

        if padding is not None:
            if isinstance(padding, int):
                pad_top = pad_bottom = pad_left = pad_right = padding
            elif isinstance(padding, list) and len(padding) == 2:
                pad_left = pad_right = padding[0]
                pad_top = pad_bottom = padding[1]
            elif isinstance(padding, list) and len(padding) == 4:
                pad_left, pad_top, pad_right, pad_bottom = padding

            h += pad_top + pad_bottom
            w += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        if pad_if_needed:
            if w < size[1]:
                diff = size[1] - w
                pad_left += diff
                pad_right += diff
                w += 2 * diff
            if h < size[0]:
                diff = size[0] - h
                pad_top += diff
                pad_bottom += diff
                h += 2 * diff

        padding = [pad_left, pad_top, pad_right, pad_bottom]

        assert 0 <= params["top"] <= h - size[0] + 1
        assert 0 <= params["left"] <= w - size[1] + 1
        assert params["height"] == size[0]
        assert params["width"] == size[1]
        assert params["needs_pad"] is any(padding)
        assert params["padding"] == padding


class TestGaussianBlur:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(
            TypeError, match="sigma should be a single int or float or a list/tuple with length 2 floats."
        ):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == 10
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]


class TestRandomPerspective:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Argument distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=-1.0)

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomPerspective(0.5, fill="abc")

Philip Meier's avatar
Philip Meier committed
553
    def test__get_params(self):
554
555
        dscale = 0.5
        transform = transforms.RandomPerspective(dscale)
Philip Meier's avatar
Philip Meier committed
556
557

        image = make_image((24, 32))
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

        params = transform._get_params([image])

        assert "coefficients" in params
        assert len(params["coefficients"]) == 8


class TestElasticTransform:
    def test_assertions(self):

        with pytest.raises(TypeError, match="alpha should be float or a sequence of floats"):
            transforms.ElasticTransform({})

        with pytest.raises(ValueError, match="alpha is a sequence its length should be one of 2"):
            transforms.ElasticTransform([1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="alpha should be a sequence of floats"):
            transforms.ElasticTransform([1, 2])

        with pytest.raises(TypeError, match="sigma should be float or a sequence of floats"):
            transforms.ElasticTransform(1.0, {})

        with pytest.raises(ValueError, match="sigma is a sequence its length should be one of 2"):
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="sigma should be a sequence of floats"):
            transforms.ElasticTransform(1.0, [1, 2])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
589
    def test__get_params(self):
590
591
592
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
593
594
595

        h, w = size = (24, 32)
        image = make_image(size)
596
597
598
599
600
601
602
603
604
605

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestRandomErasing:
Philip Meier's avatar
Philip Meier committed
606
    def test_assertions(self):
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

Philip Meier's avatar
Philip Meier committed
622
        image = make_image((24, 32))
623
624
625
626
627
628
629

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([image])

    @pytest.mark.parametrize("value", [5.0, [1, 2, 3], "random"])
Philip Meier's avatar
Philip Meier committed
630
631
632
    def test__get_params(self, value):
        image = make_image((24, 32))
        num_channels, height, width = F.get_dimensions(image)
633
634
635
636
637
638
639
640
641

        transform = transforms.RandomErasing(value=value)
        params = transform._get_params([image])

        v = params["v"]
        h, w = params["h"], params["w"]
        i, j = params["i"], params["j"]
        assert isinstance(v, torch.Tensor)
        if value == "random":
Philip Meier's avatar
Philip Meier committed
642
            assert v.shape == (num_channels, h, w)
643
644
645
        elif isinstance(value, (int, float)):
            assert v.shape == (1, 1, 1)
        elif isinstance(value, (list, tuple)):
Philip Meier's avatar
Philip Meier committed
646
            assert v.shape == (num_channels, 1, 1)
647

Philip Meier's avatar
Philip Meier committed
648
649
        assert 0 <= i <= height - h
        assert 0 <= j <= width - w
650
651
652
653
654


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
655
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


670
class TestToImage:
671
672
    @pytest.mark.parametrize(
        "inpt_type",
673
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
674
675
676
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
677
            "torchvision.transforms.v2.functional.to_image",
678
679
680
681
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
682
        transform = transforms.ToImage()
683
        transform(inpt)
684
        if inpt_type in (datapoints.BoundingBoxes, datapoints.Image, str, int):
685
686
687
688
689
690
691
692
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
693
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
694
695
    )
    def test__transform(self, inpt_type, mocker):
696
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
697
698
699
700

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
701
        if inpt_type in (PIL.Image.Image, datapoints.BoundingBoxes, str, int):
702
703
704
705
706
707
708
709
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
710
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
711
712
713
714
715
716
717
718
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
719
        if inpt_type in (datapoints.Image, torch.Tensor, datapoints.BoundingBoxes, str, int):
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
750
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
751
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
752
753
754


class TestRandomIoUCrop:
755
    @pytest.mark.parametrize("device", cpu_and_cuda())
756
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
757
758
759
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
760
        bboxes = datapoints.BoundingBoxes(
761
762
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
763
            canvas_size=size,
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
        image = datapoints.Image(torch.rand(1, 3, 4, 4))
Philip Meier's avatar
Philip Meier committed
796
        bboxes = datapoints.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
815
816
        size = (32, 24)
        image = make_image(size)
817
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
818
        masks = make_detection_mask(size, num_objects=6)
819
820
821
822
823
824
825
826
827
828
829

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
830
        assert isinstance(output_bboxes, datapoints.BoundingBoxes)
831
832
833
834
835
836
837
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
        assert isinstance(output_masks, datapoints.Mask)


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
838
839
    def test__get_params(self):
        canvas_size = (24, 32)
840
841
842
843
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
844
845

        sample = make_image(canvas_size)
846
847
848
849
850
851
852
853
854
855
856
857

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
858
859
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
860

Philip Meier's avatar
Philip Meier committed
861
862
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
863
864
865
866


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
867
868
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
869

870
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
871

Philip Meier's avatar
Philip Meier committed
872
        sample = make_image(canvas_size)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
            datapoints.Image(122 * torch.ones(1, 3, 8, 8)),
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
913
            with pytest.raises(TypeError, match="does not support PIL images"):
914
915
916
917
918
919
920
921
922
923
924
925
926
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

927
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
            datapoints.Video(torch.zeros(1, 10, 3, 8, 8)),
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
974
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20))
975
976

    with pytest.warns(UserWarning, match=match):
977
        F.resize(datapoints.Video(tensor_video), (20, 20))
978
    with pytest.warns(UserWarning, match=match):
979
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20))
980
981
982
983
984
985
986
987
988
989
990
991
992

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

993
994
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
995
996
997
998
999


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
1000
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
1001
1002
1003
1004
1005
1006
1007
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
1008
        assert is_pure_tensor(image)
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

1020
1021
1022
1023
1024
1025
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1026
1027
    t = transforms.Compose(
        [
1028
            transforms.RandomResizedCrop((224, 224), antialias=True),
1029
1030
1031
1032
1033
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
1034
            to_tensor,
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
1061
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
1062
1063
1064
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
1065
1066
1067
1068
1069
1070
1071

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1072
1073
1074
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
1075
            to_tensor,
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
1089
            to_tensor,
1090
1091
1092
1093
1094
1095
1096
1097
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
1098
            to_tensor,
1099
1100
1101
1102
1103
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
1104
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), datapoints.Mask: 0}, p=1),
1105
1106
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1107
            to_tensor,
1108
1109
1110
1111
1112
1113
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1114
            to_tensor,
1115
1116
1117
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
1118
        t += [transforms.SanitizeBoundingBoxes()]
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
1129
        assert is_pure_tensor(image)
1130
1131
1132
1133
1134
1135

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
Philip Meier's avatar
Philip Meier committed
1136
    boxes = datapoints.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

    masks = datapoints.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

1149
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not datapoints.Image:
1150
        assert is_pure_tensor(out["image"])
1151
1152
1153
1154
1155
1156
1157
1158
    else:
        assert isinstance(out["image"], datapoints.Image)
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
1159
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
1160
1161
1162
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
1163
        (True, "ssd"): 5,
1164
1165
1166
1167
1168
1169
1170
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
1171
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
1172
1173
1174
1175
1176
1177
1178
1179
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1207
    boxes = datapoints.BoundingBoxes(
1208
1209
        boxes,
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1210
        canvas_size=(H, W),
1211
1212
1213
    )

    masks = datapoints.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1214
1215
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1216
    sample = {
1217
        "image": input_img,
1218
1219
        "labels": labels,
        "boxes": boxes,
1220
        "whatever": whatever,
1221
1222
1223
1224
        "None": None,
        "masks": masks,
    }

1225
1226
1227
1228
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1229
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1230

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1246

1247
    assert isinstance(out_boxes, datapoints.BoundingBoxes)
1248
1249
    assert isinstance(out_masks, datapoints.Mask)

1250
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1251
        assert out_labels is labels
1252
    else:
1253
1254
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1255
        # This works because we conveniently set labels to arange(num_boxes)
1256
        assert out_labels.tolist() == valid_indices
1257
1258


1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
    assert isinstance(out_img, datapoints.Image)
    assert isinstance(out_boxes, datapoints.BoundingBoxes)


1273
1274
def test_sanitize_bounding_boxes_errors():

1275
    good_bbox = datapoints.BoundingBoxes(
1276
1277
        [[0, 0, 10, 10]],
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1278
        canvas_size=(20, 20),
1279
1280
1281
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1282
        transforms.SanitizeBoundingBoxes(min_size=0)
1283
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1284
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1285
1286
1287

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1288
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1289
1290
1291

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1292
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1293
1294
1295

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1296
        transforms.SanitizeBoundingBoxes()(different_sizes)
1297

1298

Philip Meier's avatar
Philip Meier committed
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)