test_transforms_v2.py 67.8 KB
Newer Older
1
2
3
import itertools
import pathlib
import random
4
import textwrap
5
6
7
8
9
10
11
12
13
14
15
16
import warnings
from collections import defaultdict

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

from common_utils import (
    assert_equal,
17
    assert_run_python_script,
18
    cpu_and_cuda,
19
20
21
22
23
24
25
26
27
28
29
30
    make_bounding_box,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
    make_video,
    make_videos,
)
from torch.utils._pytree import tree_flatten, tree_unflatten
from torchvision import datapoints
from torchvision.ops.boxes import box_iou
Philip Meier's avatar
Philip Meier committed
31
from torchvision.transforms.functional import InterpolationMode, to_pil_image
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from torchvision.transforms.v2 import functional as F
from torchvision.transforms.v2.utils import check_type, is_simple_tensor, query_chw


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
49
50
    for bounding_boxes in make_bounding_boxes(*args, **kwargs):
        yield bounding_boxes.data
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
72
        if isinstance(value, (datapoints.BoundingBoxes, datapoints.Mask)):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            # AA transforms don't support bounding boxes or masks
            continue
        elif check_type(value, (datapoints.Image, datapoints.Video, is_simple_tensor, PIL.Image.Image)):
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
        elif check_type(value, (datapoints.Image, datapoints.Video, is_simple_tensor)):
            # normalize doesn't support integer images
107
            value = F.to_dtype(value, torch.float32, scale=True)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
138
139
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
140
            (transforms.RandomRotation(degrees=30), None),
141
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
142
143
144
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
145
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
146
            (transforms.ClampBoundingBoxes(), None),
147
            (transforms.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.CXCYWH), None),
148
            (transforms.ConvertImageDtype(), None),
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
175
    @pytest.mark.parametrize("device", cpu_and_cuda())
176
177
178
179
180
181
182
    def test_common(self, transform, adapter, container_type, image_or_video, device):
        spatial_size = F.get_spatial_size(image_or_video)
        input = dict(
            image_or_video=image_or_video,
            image_datapoint=make_image(size=spatial_size),
            video_datapoint=make_video(size=spatial_size),
            image_pil=next(make_pil_images(sizes=[spatial_size], color_spaces=["RGB"])),
183
            bounding_boxes_xyxy=make_bounding_box(
184
                format=datapoints.BoundingBoxFormat.XYXY, spatial_size=spatial_size, batch_dims=(3,)
185
            ),
186
            bounding_boxes_xywh=make_bounding_box(
187
                format=datapoints.BoundingBoxFormat.XYWH, spatial_size=spatial_size, batch_dims=(4,)
188
            ),
189
            bounding_boxes_cxcywh=make_bounding_box(
190
                format=datapoints.BoundingBoxFormat.CXCYWH, spatial_size=spatial_size, batch_dims=(5,)
191
            ),
192
            bounding_boxes_degenerate_xyxy=datapoints.BoundingBoxes(
193
194
195
196
197
198
199
200
201
202
203
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
                format=datapoints.BoundingBoxFormat.XYXY,
                spatial_size=spatial_size,
            ),
204
            bounding_boxes_degenerate_xywh=datapoints.BoundingBoxes(
205
206
207
208
209
210
211
212
213
214
215
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.XYWH,
                spatial_size=spatial_size,
            ),
216
            bounding_boxes_degenerate_cxcywh=datapoints.BoundingBoxes(
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.CXCYWH,
                spatial_size=spatial_size,
            ),
            detection_mask=make_detection_mask(size=spatial_size),
            segmentation_mask=make_segmentation_mask(size=spatial_size),
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

264
            if isinstance(input_item, datapoints.BoundingBoxes) and not isinstance(
265
266
267
268
269
270
271
272
273
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
        for format in list(datapoints.BoundingBoxFormat):
            sample = dict(
274
                boxes=datapoints.BoundingBoxes([[0, 0, 0, 0]], format=format, spatial_size=(224, 244)),
275
276
                labels=torch.tensor([3]),
            )
277
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
278
279
280
281
282
283
284
285
286
287
288
289
290

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
291
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.RandomResizedCrop([16, 16], antialias=True),
                itertools.chain(
                    make_images(extra_dims=[(4,)]),
                    make_vanilla_tensor_images(),
                    make_pil_images(),
                    make_videos(extra_dims=[()]),
                ),
            )
        ]
    )
    def test_random_resized_crop(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
def test_simple_tensor_heuristic(flat_inputs):
    def split_on_simple_tensor(to_split):
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
        # 1. The first simple tensor. If none is present, this will be `None`
        # 2. A list of the remaining simple tensors
        # 3. A list of all other items
        simple_tensors = []
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
            (simple_tensors if is_simple_tensor(inpt) else others).append(item)
        return simple_tensors[0] if simple_tensors else None, simple_tensors[1:], others

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

    first_simple_tensor_input, other_simple_tensor_inputs, other_inputs = split_on_simple_tensor(flat_inputs)

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

    first_simple_tensor_output, other_simple_tensor_outputs, other_outputs = split_on_simple_tensor(transformed_sample)

    if first_simple_tensor_input is not None:
        if other_inputs:
            assert not transform.was_applied(first_simple_tensor_output, first_simple_tensor_input)
        else:
            assert transform.was_applied(first_simple_tensor_output, first_simple_tensor_input)

    for output, inpt in zip(other_simple_tensor_outputs, other_simple_tensor_inputs):
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestPad:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")

    @pytest.mark.parametrize("padding", [1, (1, 2), [1, 2, 3, 4]])
    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("padding_mode", ["constant", "edge"])
    def test__transform(self, padding, fill, padding_mode, mocker):
        transform = transforms.Pad(padding, fill=fill, padding_mode=padding_mode)

        fn = mocker.patch("torchvision.transforms.v2.functional.pad")
        inpt = mocker.MagicMock(spec=datapoints.Image)
        _ = transform(inpt)

        fill = transforms._utils._convert_fill_arg(fill)
        if isinstance(padding, tuple):
            padding = list(padding)
        fn.assert_called_once_with(inpt, padding=padding, fill=fill, padding_mode=padding_mode)

    @pytest.mark.parametrize("fill", [12, {datapoints.Image: 12, datapoints.Mask: 34}])
    def test__transform_image_mask(self, fill, mocker):
        transform = transforms.Pad(1, fill=fill, padding_mode="constant")

        fn = mocker.patch("torchvision.transforms.v2.functional.pad")
        image = datapoints.Image(torch.rand(3, 32, 32))
        mask = datapoints.Mask(torch.randint(0, 5, size=(32, 32)))
        inpt = [image, mask]
        _ = transform(inpt)

        if isinstance(fill, int):
            fill = transforms._utils._convert_fill_arg(fill)
            calls = [
                mocker.call(image, padding=1, fill=fill, padding_mode="constant"),
                mocker.call(mask, padding=1, fill=fill, padding_mode="constant"),
            ]
        else:
            fill_img = transforms._utils._convert_fill_arg(fill[type(image)])
            fill_mask = transforms._utils._convert_fill_arg(fill[type(mask)])
            calls = [
                mocker.call(image, padding=1, fill=fill_img, padding_mode="constant"),
                mocker.call(mask, padding=1, fill=fill_mask, padding_mode="constant"),
            ]
        fn.assert_has_calls(calls)


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
    def test__get_params(self, fill, side_range, mocker):
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

        image = mocker.MagicMock(spec=datapoints.Image)
        h, w = image.spatial_size = (24, 32)

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
    def test__transform(self, fill, side_range, mocker):
        inpt = mocker.MagicMock(spec=datapoints.Image)
        inpt.num_channels = 3
        inpt.spatial_size = (24, 32)

        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range, p=1)

        fn = mocker.patch("torchvision.transforms.v2.functional.pad")
        # vfdev-5, Feature Request: let's store params as Transform attribute
        # This could be also helpful for users
        # Otherwise, we can mock transform._get_params
        torch.manual_seed(12)
        _ = transform(inpt)
        torch.manual_seed(12)
        torch.rand(1)  # random apply changes random state
        params = transform._get_params([inpt])

        fill = transforms._utils._convert_fill_arg(fill)
        fn.assert_called_once_with(inpt, **params, fill=fill)

    @pytest.mark.parametrize("fill", [12, {datapoints.Image: 12, datapoints.Mask: 34}])
    def test__transform_image_mask(self, fill, mocker):
        transform = transforms.RandomZoomOut(fill=fill, p=1.0)

        fn = mocker.patch("torchvision.transforms.v2.functional.pad")
        image = datapoints.Image(torch.rand(3, 32, 32))
        mask = datapoints.Mask(torch.randint(0, 5, size=(32, 32)))
        inpt = [image, mask]

        torch.manual_seed(12)
        _ = transform(inpt)
        torch.manual_seed(12)
        torch.rand(1)  # random apply changes random state
        params = transform._get_params(inpt)

        if isinstance(fill, int):
            fill = transforms._utils._convert_fill_arg(fill)
            calls = [
                mocker.call(image, **params, fill=fill),
                mocker.call(mask, **params, fill=fill),
            ]
        else:
            fill_img = transforms._utils._convert_fill_arg(fill[type(image)])
            fill_mask = transforms._utils._convert_fill_arg(fill[type(mask)])
            calls = [
                mocker.call(image, **params, fill=fill_img),
                mocker.call(mask, **params, fill=fill_mask),
            ]
        fn.assert_has_calls(calls)


class TestRandomCrop:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")

    @pytest.mark.parametrize("padding", [None, 1, [2, 3], [1, 2, 3, 4]])
    @pytest.mark.parametrize("size, pad_if_needed", [((10, 10), False), ((50, 25), True)])
    def test__get_params(self, padding, pad_if_needed, size, mocker):
        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)
        h, w = image.spatial_size

        transform = transforms.RandomCrop(size, padding=padding, pad_if_needed=pad_if_needed)
        params = transform._get_params([image])

        if padding is not None:
            if isinstance(padding, int):
                pad_top = pad_bottom = pad_left = pad_right = padding
            elif isinstance(padding, list) and len(padding) == 2:
                pad_left = pad_right = padding[0]
                pad_top = pad_bottom = padding[1]
            elif isinstance(padding, list) and len(padding) == 4:
                pad_left, pad_top, pad_right, pad_bottom = padding

            h += pad_top + pad_bottom
            w += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        if pad_if_needed:
            if w < size[1]:
                diff = size[1] - w
                pad_left += diff
                pad_right += diff
                w += 2 * diff
            if h < size[0]:
                diff = size[0] - h
                pad_top += diff
                pad_bottom += diff
                h += 2 * diff

        padding = [pad_left, pad_top, pad_right, pad_bottom]

        assert 0 <= params["top"] <= h - size[0] + 1
        assert 0 <= params["left"] <= w - size[1] + 1
        assert params["height"] == size[0]
        assert params["width"] == size[1]
        assert params["needs_pad"] is any(padding)
        assert params["padding"] == padding

    @pytest.mark.parametrize("padding", [None, 1, [2, 3], [1, 2, 3, 4]])
    @pytest.mark.parametrize("pad_if_needed", [False, True])
    @pytest.mark.parametrize("fill", [False, True])
    @pytest.mark.parametrize("padding_mode", ["constant", "edge"])
    def test__transform(self, padding, pad_if_needed, fill, padding_mode, mocker):
        output_size = [10, 12]
        transform = transforms.RandomCrop(
            output_size, padding=padding, pad_if_needed=pad_if_needed, fill=fill, padding_mode=padding_mode
        )

        inpt = mocker.MagicMock(spec=datapoints.Image)
        inpt.num_channels = 3
        inpt.spatial_size = (32, 32)

        expected = mocker.MagicMock(spec=datapoints.Image)
        expected.num_channels = 3
        if isinstance(padding, int):
            expected.spatial_size = (inpt.spatial_size[0] + padding, inpt.spatial_size[1] + padding)
        elif isinstance(padding, list):
            expected.spatial_size = (
                inpt.spatial_size[0] + sum(padding[0::2]),
                inpt.spatial_size[1] + sum(padding[1::2]),
            )
        else:
            expected.spatial_size = inpt.spatial_size
        _ = mocker.patch("torchvision.transforms.v2.functional.pad", return_value=expected)
        fn_crop = mocker.patch("torchvision.transforms.v2.functional.crop")

        # vfdev-5, Feature Request: let's store params as Transform attribute
        # This could be also helpful for users
        # Otherwise, we can mock transform._get_params
        torch.manual_seed(12)
        _ = transform(inpt)
        torch.manual_seed(12)
        params = transform._get_params([inpt])
        if padding is None and not pad_if_needed:
            fn_crop.assert_called_once_with(
                inpt, top=params["top"], left=params["left"], height=output_size[0], width=output_size[1]
            )
        elif not pad_if_needed:
            fn_crop.assert_called_once_with(
                expected, top=params["top"], left=params["left"], height=output_size[0], width=output_size[1]
            )
        elif padding is None:
            # vfdev-5: I do not know how to mock and test this case
            pass
        else:
            # vfdev-5: I do not know how to mock and test this case
            pass


class TestGaussianBlur:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(
            TypeError, match="sigma should be a single int or float or a list/tuple with length 2 floats."
        ):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == 10
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]

    @pytest.mark.parametrize("kernel_size", [3, [3, 5], (5, 3)])
    @pytest.mark.parametrize("sigma", [2.0, [2.0, 3.0]])
    def test__transform(self, kernel_size, sigma, mocker):
        transform = transforms.GaussianBlur(kernel_size=kernel_size, sigma=sigma)

        if isinstance(kernel_size, (tuple, list)):
            assert transform.kernel_size == kernel_size
        else:
            kernel_size = (kernel_size, kernel_size)
            assert transform.kernel_size == kernel_size

        if isinstance(sigma, (tuple, list)):
            assert transform.sigma == sigma
        else:
            assert transform.sigma == [sigma, sigma]

        fn = mocker.patch("torchvision.transforms.v2.functional.gaussian_blur")
        inpt = mocker.MagicMock(spec=datapoints.Image)
        inpt.num_channels = 3
        inpt.spatial_size = (24, 32)

        # vfdev-5, Feature Request: let's store params as Transform attribute
        # This could be also helpful for users
        # Otherwise, we can mock transform._get_params
        torch.manual_seed(12)
        _ = transform(inpt)
        torch.manual_seed(12)
        params = transform._get_params([inpt])

        fn.assert_called_once_with(inpt, kernel_size, **params)


class TestRandomColorOp:
    @pytest.mark.parametrize("p", [0.0, 1.0])
    @pytest.mark.parametrize(
        "transform_cls, func_op_name, kwargs",
        [
            (transforms.RandomEqualize, "equalize", {}),
            (transforms.RandomInvert, "invert", {}),
            (transforms.RandomAutocontrast, "autocontrast", {}),
            (transforms.RandomPosterize, "posterize", {"bits": 4}),
            (transforms.RandomSolarize, "solarize", {"threshold": 0.5}),
            (transforms.RandomAdjustSharpness, "adjust_sharpness", {"sharpness_factor": 0.5}),
        ],
    )
    def test__transform(self, p, transform_cls, func_op_name, kwargs, mocker):
        transform = transform_cls(p=p, **kwargs)

        fn = mocker.patch(f"torchvision.transforms.v2.functional.{func_op_name}")
        inpt = mocker.MagicMock(spec=datapoints.Image)
        _ = transform(inpt)
        if p > 0.0:
            fn.assert_called_once_with(inpt, **kwargs)
        else:
            assert fn.call_count == 0


class TestRandomPerspective:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Argument distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=-1.0)

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomPerspective(0.5, fill="abc")

    def test__get_params(self, mocker):
        dscale = 0.5
        transform = transforms.RandomPerspective(dscale)
        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)

        params = transform._get_params([image])

        h, w = image.spatial_size
        assert "coefficients" in params
        assert len(params["coefficients"]) == 8

    @pytest.mark.parametrize("distortion_scale", [0.1, 0.7])
    def test__transform(self, distortion_scale, mocker):
        interpolation = InterpolationMode.BILINEAR
        fill = 12
        transform = transforms.RandomPerspective(distortion_scale, fill=fill, interpolation=interpolation)

        fn = mocker.patch("torchvision.transforms.v2.functional.perspective")
        inpt = mocker.MagicMock(spec=datapoints.Image)
        inpt.num_channels = 3
        inpt.spatial_size = (24, 32)
        # vfdev-5, Feature Request: let's store params as Transform attribute
        # This could be also helpful for users
        # Otherwise, we can mock transform._get_params
        torch.manual_seed(12)
        _ = transform(inpt)
        torch.manual_seed(12)
        torch.rand(1)  # random apply changes random state
        params = transform._get_params([inpt])

        fill = transforms._utils._convert_fill_arg(fill)
        fn.assert_called_once_with(inpt, None, None, **params, fill=fill, interpolation=interpolation)


class TestElasticTransform:
    def test_assertions(self):

        with pytest.raises(TypeError, match="alpha should be float or a sequence of floats"):
            transforms.ElasticTransform({})

        with pytest.raises(ValueError, match="alpha is a sequence its length should be one of 2"):
            transforms.ElasticTransform([1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="alpha should be a sequence of floats"):
            transforms.ElasticTransform([1, 2])

        with pytest.raises(TypeError, match="sigma should be float or a sequence of floats"):
            transforms.ElasticTransform(1.0, {})

        with pytest.raises(ValueError, match="sigma is a sequence its length should be one of 2"):
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="sigma should be a sequence of floats"):
            transforms.ElasticTransform(1.0, [1, 2])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

    def test__get_params(self, mocker):
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)

        params = transform._get_params([image])

        h, w = image.spatial_size
        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()

    @pytest.mark.parametrize("alpha", [5.0, [5.0, 10.0]])
    @pytest.mark.parametrize("sigma", [2.0, [2.0, 5.0]])
    def test__transform(self, alpha, sigma, mocker):
        interpolation = InterpolationMode.BILINEAR
        fill = 12
        transform = transforms.ElasticTransform(alpha, sigma=sigma, fill=fill, interpolation=interpolation)

        if isinstance(alpha, float):
            assert transform.alpha == [alpha, alpha]
        else:
            assert transform.alpha == alpha

        if isinstance(sigma, float):
            assert transform.sigma == [sigma, sigma]
        else:
            assert transform.sigma == sigma

        fn = mocker.patch("torchvision.transforms.v2.functional.elastic")
        inpt = mocker.MagicMock(spec=datapoints.Image)
        inpt.num_channels = 3
        inpt.spatial_size = (24, 32)

        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock()
        _ = transform(inpt)
        params = transform._get_params([inpt])
        fill = transforms._utils._convert_fill_arg(fill)
        fn.assert_called_once_with(inpt, **params, fill=fill, interpolation=interpolation)


class TestRandomErasing:
    def test_assertions(self, mocker):
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([image])

    @pytest.mark.parametrize("value", [5.0, [1, 2, 3], "random"])
    def test__get_params(self, value, mocker):
        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)

        transform = transforms.RandomErasing(value=value)
        params = transform._get_params([image])

        v = params["v"]
        h, w = params["h"], params["w"]
        i, j = params["i"], params["j"]
        assert isinstance(v, torch.Tensor)
        if value == "random":
            assert v.shape == (image.num_channels, h, w)
        elif isinstance(value, (int, float)):
            assert v.shape == (1, 1, 1)
        elif isinstance(value, (list, tuple)):
            assert v.shape == (image.num_channels, 1, 1)

        assert 0 <= i <= image.spatial_size[0] - h
        assert 0 <= j <= image.spatial_size[1] - w

    @pytest.mark.parametrize("p", [0, 1])
    def test__transform(self, mocker, p):
        transform = transforms.RandomErasing(p=p)
        transform._transformed_types = (mocker.MagicMock,)

        i_sentinel = mocker.MagicMock()
        j_sentinel = mocker.MagicMock()
        h_sentinel = mocker.MagicMock()
        w_sentinel = mocker.MagicMock()
        v_sentinel = mocker.MagicMock()
        mocker.patch(
            "torchvision.transforms.v2._augment.RandomErasing._get_params",
            return_value=dict(i=i_sentinel, j=j_sentinel, h=h_sentinel, w=w_sentinel, v=v_sentinel),
        )

        inpt_sentinel = mocker.MagicMock()

        mock = mocker.patch("torchvision.transforms.v2._augment.F.erase")
        output = transform(inpt_sentinel)

        if p:
            mock.assert_called_once_with(
                inpt_sentinel,
                i=i_sentinel,
                j=j_sentinel,
                h=h_sentinel,
                w=w_sentinel,
                v=v_sentinel,
                inplace=transform.inplace,
            )
        else:
            mock.assert_not_called()
            assert output is inpt_sentinel


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
945
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


class TestToImageTensor:
    @pytest.mark.parametrize(
        "inpt_type",
963
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
964
965
966
967
968
969
970
971
972
973
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
            "torchvision.transforms.v2.functional.to_image_tensor",
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToImageTensor()
        transform(inpt)
974
        if inpt_type in (datapoints.BoundingBoxes, datapoints.Image, str, int):
975
976
977
978
979
980
981
982
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToImagePIL:
    @pytest.mark.parametrize(
        "inpt_type",
983
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
984
985
986
987
988
989
990
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.v2.functional.to_image_pil")

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToImagePIL()
        transform(inpt)
991
        if inpt_type in (datapoints.BoundingBoxes, PIL.Image.Image, str, int):
992
993
994
995
996
997
998
999
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
1000
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
1001
1002
1003
1004
1005
1006
1007
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.v2.functional.to_image_pil")

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
1008
        if inpt_type in (PIL.Image.Image, datapoints.BoundingBoxes, str, int):
1009
1010
1011
1012
1013
1014
1015
1016
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
1017
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
1018
1019
1020
1021
1022
1023
1024
1025
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
1026
        if inpt_type in (datapoints.Image, torch.Tensor, datapoints.BoundingBoxes, str, int):
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
1057
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
1058
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
1059
1060
1061


class TestRandomIoUCrop:
1062
    @pytest.mark.parametrize("device", cpu_and_cuda())
1063
1064
1065
1066
1067
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
    def test__get_params(self, device, options, mocker):
        image = mocker.MagicMock(spec=datapoints.Image)
        image.num_channels = 3
        image.spatial_size = (24, 32)
1068
        bboxes = datapoints.BoundingBoxes(
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
            spatial_size=image.spatial_size,
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            orig_h = image.spatial_size[0]
            orig_w = image.spatial_size[1]
            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
        image = datapoints.Image(torch.rand(1, 3, 4, 4))
1106
        bboxes = datapoints.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", spatial_size=(4, 4))
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

        image = datapoints.Image(torch.rand(3, 32, 24))
1126
        bboxes = make_bounding_box(format="XYXY", spatial_size=(32, 24), batch_dims=(6,))
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
        masks = make_detection_mask((32, 24), num_objects=6)

        sample = [image, bboxes, masks]

        fn = mocker.patch("torchvision.transforms.v2.functional.crop", side_effect=lambda x, **params: x)
        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        assert fn.call_count == 3

        expected_calls = [
            mocker.call(image, top=params["top"], left=params["left"], height=params["height"], width=params["width"]),
            mocker.call(bboxes, top=params["top"], left=params["left"], height=params["height"], width=params["width"]),
            mocker.call(masks, top=params["top"], left=params["left"], height=params["height"], width=params["width"]),
        ]

        fn.assert_has_calls(expected_calls)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
1150
        assert isinstance(output_bboxes, datapoints.BoundingBoxes)
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
        assert isinstance(output_masks, datapoints.Mask)


class TestScaleJitter:
    def test__get_params(self, mocker):
        spatial_size = (24, 32)
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
        sample = mocker.MagicMock(spec=datapoints.Image, num_channels=3, spatial_size=spatial_size)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

            r_min = min(target_size[1] / spatial_size[0], target_size[0] / spatial_size[1]) * scale_range[0]
            r_max = min(target_size[1] / spatial_size[0], target_size[0] / spatial_size[1]) * scale_range[1]

            assert int(spatial_size[0] * r_min) <= height <= int(spatial_size[0] * r_max)
            assert int(spatial_size[1] * r_min) <= width <= int(spatial_size[1] * r_max)

    def test__transform(self, mocker):
        interpolation_sentinel = mocker.MagicMock(spec=InterpolationMode)
        antialias_sentinel = mocker.MagicMock()

        transform = transforms.ScaleJitter(
            target_size=(16, 12), interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )
        transform._transformed_types = (mocker.MagicMock,)

        size_sentinel = mocker.MagicMock()
        mocker.patch(
            "torchvision.transforms.v2._geometry.ScaleJitter._get_params", return_value=dict(size=size_sentinel)
        )

        inpt_sentinel = mocker.MagicMock()

        mock = mocker.patch("torchvision.transforms.v2._geometry.F.resize")
        transform(inpt_sentinel)

        mock.assert_called_once_with(
            inpt_sentinel, size=size_sentinel, interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
    def test__get_params(self, min_size, max_size, mocker):
        spatial_size = (3, 10)

1212
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

        sample = mocker.MagicMock(spec=datapoints.Image, num_channels=3, spatial_size=spatial_size)
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size

    def test__transform(self, mocker):
        interpolation_sentinel = mocker.MagicMock(spec=InterpolationMode)
        antialias_sentinel = mocker.MagicMock()

        transform = transforms.RandomShortestSize(
            min_size=[3, 5, 7], max_size=12, interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )
        transform._transformed_types = (mocker.MagicMock,)

        size_sentinel = mocker.MagicMock()
        mocker.patch(
            "torchvision.transforms.v2._geometry.RandomShortestSize._get_params",
            return_value=dict(size=size_sentinel),
        )

        inpt_sentinel = mocker.MagicMock()

        mock = mocker.patch("torchvision.transforms.v2._geometry.F.resize")
        transform(inpt_sentinel)

        mock.assert_called_once_with(
            inpt_sentinel, size=size_sentinel, interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
            datapoints.Image(122 * torch.ones(1, 3, 8, 8)),
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
            with pytest.raises(TypeError, match="LinearTransformation does not work on PIL Images"):
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

1293
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size

    def test__transform(self, mocker):
        interpolation_sentinel = mocker.MagicMock(spec=InterpolationMode)
        antialias_sentinel = mocker.MagicMock()

        transform = transforms.RandomResize(
            min_size=-1, max_size=-1, interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )
        transform._transformed_types = (mocker.MagicMock,)

        size_sentinel = mocker.MagicMock()
        mocker.patch(
            "torchvision.transforms.v2._geometry.RandomResize._get_params",
            return_value=dict(size=size_sentinel),
        )

        inpt_sentinel = mocker.MagicMock()

        mock_resize = mocker.patch("torchvision.transforms.v2._geometry.F.resize")
        transform(inpt_sentinel)

        mock_resize.assert_called_with(
            inpt_sentinel, size_sentinel, interpolation=interpolation_sentinel, antialias=antialias_sentinel
        )


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
            datapoints.Video(torch.zeros(1, 10, 3, 8, 8)),
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
        datapoints.Image(tensor_img).resized_crop(0, 0, 10, 10, (20, 20))

    with pytest.warns(UserWarning, match=match):
        datapoints.Video(tensor_video).resize((20, 20))
    with pytest.warns(UserWarning, match=match):
        datapoints.Video(tensor_video).resized_crop(0, 0, 10, 10, (20, 20))

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

        datapoints.Image(tensor_img).resized_crop(0, 0, 10, 10, (20, 20), antialias=True)
        datapoints.Video(tensor_video).resized_crop(0, 0, 10, 10, (20, 20), antialias=True)


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImageTensor))
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
        assert is_simple_tensor(image)

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

1410
1411
1412
1413
1414
1415
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1416
1417
    t = transforms.Compose(
        [
1418
            transforms.RandomResizedCrop((224, 224), antialias=True),
1419
1420
1421
1422
1423
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
1424
            to_tensor,
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImageTensor))
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
1455
1456
1457
1458
1459
1460
1461

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1462
1463
1464
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
1465
            to_tensor,
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
1479
            to_tensor,
1480
1481
1482
1483
1484
1485
1486
1487
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
1488
            to_tensor,
1489
1490
1491
1492
1493
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
1494
            transforms.RandomZoomOut(fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0}), p=1),
1495
1496
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1497
            to_tensor,
1498
1499
1500
1501
1502
1503
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1504
            to_tensor,
1505
1506
1507
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
1508
        t += [transforms.SanitizeBoundingBoxes()]
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
        assert is_simple_tensor(image)

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
1526
    boxes = datapoints.BoundingBoxes(boxes, format="XYXY", spatial_size=(H, W))
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

    masks = datapoints.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

1539
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not datapoints.Image:
1540
1541
1542
1543
1544
1545
1546
1547
1548
        assert is_simple_tensor(out["image"])
    else:
        assert isinstance(out["image"], datapoints.Image)
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
1549
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
1550
1551
1552
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
1553
        (True, "ssd"): 5,
1554
1555
1556
1557
1558
1559
1560
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
1561
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
1562
1563
1564
1565
1566
1567
1568
1569
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1597
    boxes = datapoints.BoundingBoxes(
1598
1599
1600
1601
1602
1603
        boxes,
        format=datapoints.BoundingBoxFormat.XYXY,
        spatial_size=(H, W),
    )

    masks = datapoints.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1604
1605
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1606
    sample = {
1607
        "image": input_img,
1608
1609
        "labels": labels,
        "boxes": boxes,
1610
        "whatever": whatever,
1611
1612
1613
1614
        "None": None,
        "masks": masks,
    }

1615
1616
1617
1618
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1619
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1620

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1636

1637
    assert isinstance(out_boxes, datapoints.BoundingBoxes)
1638
1639
    assert isinstance(out_masks, datapoints.Mask)

1640
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1641
        assert out_labels is labels
1642
    else:
1643
1644
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1645
        # This works because we conveniently set labels to arange(num_boxes)
1646
        assert out_labels.tolist() == valid_indices
1647
1648
1649
1650


def test_sanitize_bounding_boxes_errors():

1651
    good_bbox = datapoints.BoundingBoxes(
1652
1653
1654
1655
1656
1657
        [[0, 0, 10, 10]],
        format=datapoints.BoundingBoxFormat.XYXY,
        spatial_size=(20, 20),
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1658
        transforms.SanitizeBoundingBoxes(min_size=0)
1659
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1660
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1661
1662
1663

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1664
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1665
1666
1667

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1668
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1669
1670
1671

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1672
        transforms.SanitizeBoundingBoxes()(different_sizes)
1673
1674

    with pytest.raises(ValueError, match="boxes must be of shape"):
1675
        bad_bbox = datapoints.BoundingBoxes(  # batch with 2 elements
1676
1677
1678
1679
1680
1681
1682
1683
            [
                [[0, 0, 10, 10]],
                [[0, 0, 10, 10]],
            ],
            format=datapoints.BoundingBoxFormat.XYXY,
            spatial_size=(20, 20),
        )
        different_sizes = {"bbox": bad_bbox, "labels": torch.arange(bad_bbox.shape[0])}
1684
        transforms.SanitizeBoundingBoxes()(different_sizes)
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733


@pytest.mark.parametrize(
    "import_statement",
    (
        "from torchvision.transforms import v2",
        "import torchvision.transforms.v2",
        "from torchvision.transforms.v2 import Resize",
        "import torchvision.transforms.v2.functional",
        "from torchvision.transforms.v2.functional import resize",
        "from torchvision import datapoints",
        "from torchvision.datapoints import Image",
        "from torchvision.datasets import wrap_dataset_for_transforms_v2",
    ),
)
@pytest.mark.parametrize("call_disable_warning", (True, False))
def test_warnings_v2_namespaces(import_statement, call_disable_warning):
    if call_disable_warning:
        source = f"""
        import warnings
        import torchvision
        torchvision.disable_beta_transforms_warning()
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            {import_statement}
        """
    else:
        source = f"""
        import pytest
        with pytest.warns(UserWarning, match="v2 namespaces are still Beta"):
            {import_statement}
        """
    assert_run_python_script(textwrap.dedent(source))


def test_no_warnings_v1_namespace():
    source = """
    import warnings
    with warnings.catch_warnings():
        warnings.simplefilter("error")
        import torchvision.transforms
        from torchvision import transforms
        import torchvision.transforms.functional
        from torchvision.transforms import Resize
        from torchvision.transforms.functional import resize
        from torchvision import datasets
        from torchvision.datasets import ImageNet
    """
    assert_run_python_script(textwrap.dedent(source))
Philip Meier's avatar
Philip Meier committed
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768


class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)