test_transforms_v2.py 49.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import itertools
import pathlib
import random
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

13
from common_utils import assert_equal, cpu_and_cuda
14
15
16
17
18
from torch.utils._pytree import tree_flatten, tree_unflatten
from torchvision import datapoints
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
19
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
20
from transforms_v2_legacy_utils import (
21
22
23
24
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
25
    make_multiple_bounding_boxes,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
45
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
46
        yield bounding_boxes.data
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
68
        if isinstance(value, (datapoints.BoundingBoxes, datapoints.Mask)):
69
70
            # AA transforms don't support bounding boxes or masks
            continue
71
        elif check_type(value, (datapoints.Image, datapoints.Video, is_pure_tensor, PIL.Image.Image)):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
101
        elif check_type(value, (datapoints.Image, datapoints.Video, is_pure_tensor)):
102
            # normalize doesn't support integer images
103
            value = F.to_dtype(value, torch.float32, scale=True)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
124
            (transforms.RandomChannelPermutation(), None),
125
126
127
128
129
130
131
132
133
134
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
135
136
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
137
            (transforms.RandomRotation(degrees=30), None),
138
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
139
140
141
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
142
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
143
            (transforms.ClampBoundingBoxes(), None),
144
            (transforms.ConvertBoundingBoxFormat(datapoints.BoundingBoxFormat.CXCYWH), None),
145
            (transforms.ConvertImageDtype(), None),
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
172
    @pytest.mark.parametrize("device", cpu_and_cuda())
173
    def test_common(self, transform, adapter, container_type, image_or_video, device):
Philip Meier's avatar
Philip Meier committed
174
        canvas_size = F.get_size(image_or_video)
175
176
        input = dict(
            image_or_video=image_or_video,
Philip Meier's avatar
Philip Meier committed
177
178
179
            image_datapoint=make_image(size=canvas_size),
            video_datapoint=make_video(size=canvas_size),
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
180
            bounding_boxes_xyxy=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
181
                format=datapoints.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
182
            ),
183
            bounding_boxes_xywh=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
184
                format=datapoints.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
185
            ),
186
            bounding_boxes_cxcywh=make_bounding_boxes(
Philip Meier's avatar
Philip Meier committed
187
                format=datapoints.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
188
            ),
189
            bounding_boxes_degenerate_xyxy=datapoints.BoundingBoxes(
190
191
192
193
194
195
196
197
198
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
                format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
199
                canvas_size=canvas_size,
200
            ),
201
            bounding_boxes_degenerate_xywh=datapoints.BoundingBoxes(
202
203
204
205
206
207
208
209
210
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
211
                canvas_size=canvas_size,
212
            ),
213
            bounding_boxes_degenerate_cxcywh=datapoints.BoundingBoxes(
214
215
216
217
218
219
220
221
222
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
                format=datapoints.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
223
                canvas_size=canvas_size,
224
            ),
Philip Meier's avatar
Philip Meier committed
225
226
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

261
            if isinstance(input_item, datapoints.BoundingBoxes) and not isinstance(
262
263
264
265
266
267
268
269
270
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
        for format in list(datapoints.BoundingBoxFormat):
            sample = dict(
Philip Meier's avatar
Philip Meier committed
271
                boxes=datapoints.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
272
273
                labels=torch.tensor([3]),
            )
274
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
275
276
277
278
279
280
281
282
283
284
285
286
287

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
288
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.RandomResizedCrop([16, 16], antialias=True),
                itertools.chain(
                    make_images(extra_dims=[(4,)]),
                    make_vanilla_tensor_images(),
                    make_pil_images(),
                    make_videos(extra_dims=[()]),
                ),
            )
        ]
    )
    def test_random_resized_crop(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
357
358
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
359
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
360
361
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
362
        # 3. A list of all other items
363
        pure_tensors = []
364
365
366
367
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
368
369
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

385
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
386
387
388
389

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

390
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
391

392
    if first_pure_tensor_input is not None:
393
        if other_inputs:
394
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
395
        else:
396
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
397

398
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestPad:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.Pad("abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.Pad([-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.Pad(12, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.Pad(12, padding_mode="abc")


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
Philip Meier's avatar
Philip Meier committed
433
    def test__get_params(self, fill, side_range):
434
435
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

Philip Meier's avatar
Philip Meier committed
436
437
        h, w = size = (24, 32)
        image = make_image(size)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h


class TestRandomCrop:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Please provide only two dimensions"):
            transforms.RandomCrop([10, 12, 14])

        with pytest.raises(TypeError, match="Got inappropriate padding arg"):
            transforms.RandomCrop([10, 12], padding="abc")

        with pytest.raises(ValueError, match="Padding must be an int or a 1, 2, or 4"):
            transforms.RandomCrop([10, 12], padding=[-0.7, 0, 0.7])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomCrop([10, 12], padding=1, fill="abc")

        with pytest.raises(ValueError, match="Padding mode should be either"):
            transforms.RandomCrop([10, 12], padding=1, padding_mode="abc")

    @pytest.mark.parametrize("padding", [None, 1, [2, 3], [1, 2, 3, 4]])
    @pytest.mark.parametrize("size, pad_if_needed", [((10, 10), False), ((50, 25), True)])
Philip Meier's avatar
Philip Meier committed
467
468
469
    def test__get_params(self, padding, pad_if_needed, size):
        h, w = size = (24, 32)
        image = make_image(size)
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

        transform = transforms.RandomCrop(size, padding=padding, pad_if_needed=pad_if_needed)
        params = transform._get_params([image])

        if padding is not None:
            if isinstance(padding, int):
                pad_top = pad_bottom = pad_left = pad_right = padding
            elif isinstance(padding, list) and len(padding) == 2:
                pad_left = pad_right = padding[0]
                pad_top = pad_bottom = padding[1]
            elif isinstance(padding, list) and len(padding) == 4:
                pad_left, pad_top, pad_right, pad_bottom = padding

            h += pad_top + pad_bottom
            w += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        if pad_if_needed:
            if w < size[1]:
                diff = size[1] - w
                pad_left += diff
                pad_right += diff
                w += 2 * diff
            if h < size[0]:
                diff = size[0] - h
                pad_top += diff
                pad_bottom += diff
                h += 2 * diff

        padding = [pad_left, pad_top, pad_right, pad_bottom]

        assert 0 <= params["top"] <= h - size[0] + 1
        assert 0 <= params["left"] <= w - size[1] + 1
        assert params["height"] == size[0]
        assert params["width"] == size[1]
        assert params["needs_pad"] is any(padding)
        assert params["padding"] == padding


class TestGaussianBlur:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Kernel size should be a tuple/list of two integers"):
            transforms.GaussianBlur([10, 12, 14])

        with pytest.raises(ValueError, match="Kernel size value should be an odd and positive number"):
            transforms.GaussianBlur(4)

        with pytest.raises(
            TypeError, match="sigma should be a single int or float or a list/tuple with length 2 floats."
        ):
            transforms.GaussianBlur(3, sigma=[1, 2, 3])

        with pytest.raises(ValueError, match="If sigma is a single number, it must be positive"):
            transforms.GaussianBlur(3, sigma=-1.0)

        with pytest.raises(ValueError, match="sigma values should be positive and of the form"):
            transforms.GaussianBlur(3, sigma=[2.0, 1.0])

    @pytest.mark.parametrize("sigma", [10.0, [10.0, 12.0]])
    def test__get_params(self, sigma):
        transform = transforms.GaussianBlur(3, sigma=sigma)
        params = transform._get_params([])

        if isinstance(sigma, float):
            assert params["sigma"][0] == params["sigma"][1] == 10
        else:
            assert sigma[0] <= params["sigma"][0] <= sigma[1]
            assert sigma[0] <= params["sigma"][1] <= sigma[1]


class TestRandomPerspective:
    def test_assertions(self):
        with pytest.raises(ValueError, match="Argument distortion_scale value should be between 0 and 1"):
            transforms.RandomPerspective(distortion_scale=-1.0)

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomPerspective(0.5, fill="abc")

Philip Meier's avatar
Philip Meier committed
549
    def test__get_params(self):
550
551
        dscale = 0.5
        transform = transforms.RandomPerspective(dscale)
Philip Meier's avatar
Philip Meier committed
552
553

        image = make_image((24, 32))
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

        params = transform._get_params([image])

        assert "coefficients" in params
        assert len(params["coefficients"]) == 8


class TestElasticTransform:
    def test_assertions(self):

        with pytest.raises(TypeError, match="alpha should be float or a sequence of floats"):
            transforms.ElasticTransform({})

        with pytest.raises(ValueError, match="alpha is a sequence its length should be one of 2"):
            transforms.ElasticTransform([1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="alpha should be a sequence of floats"):
            transforms.ElasticTransform([1, 2])

        with pytest.raises(TypeError, match="sigma should be float or a sequence of floats"):
            transforms.ElasticTransform(1.0, {})

        with pytest.raises(ValueError, match="sigma is a sequence its length should be one of 2"):
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(ValueError, match="sigma should be a sequence of floats"):
            transforms.ElasticTransform(1.0, [1, 2])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
585
    def test__get_params(self):
586
587
588
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
589
590
591

        h, w = size = (24, 32)
        image = make_image(size)
592
593
594
595
596
597
598
599
600
601

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestRandomErasing:
Philip Meier's avatar
Philip Meier committed
602
    def test_assertions(self):
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        with pytest.raises(TypeError, match="Argument value should be either a number or str or a sequence"):
            transforms.RandomErasing(value={})

        with pytest.raises(ValueError, match="If value is str, it should be 'random'"):
            transforms.RandomErasing(value="abc")

        with pytest.raises(TypeError, match="Scale should be a sequence"):
            transforms.RandomErasing(scale=123)

        with pytest.raises(TypeError, match="Ratio should be a sequence"):
            transforms.RandomErasing(ratio=123)

        with pytest.raises(ValueError, match="Scale should be between 0 and 1"):
            transforms.RandomErasing(scale=[-1, 2])

Philip Meier's avatar
Philip Meier committed
618
        image = make_image((24, 32))
619
620
621
622
623
624
625

        transform = transforms.RandomErasing(value=[1, 2, 3, 4])

        with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value"):
            transform._get_params([image])

    @pytest.mark.parametrize("value", [5.0, [1, 2, 3], "random"])
Philip Meier's avatar
Philip Meier committed
626
627
628
    def test__get_params(self, value):
        image = make_image((24, 32))
        num_channels, height, width = F.get_dimensions(image)
629
630
631
632
633
634
635
636
637

        transform = transforms.RandomErasing(value=value)
        params = transform._get_params([image])

        v = params["v"]
        h, w = params["h"], params["w"]
        i, j = params["i"], params["j"]
        assert isinstance(v, torch.Tensor)
        if value == "random":
Philip Meier's avatar
Philip Meier committed
638
            assert v.shape == (num_channels, h, w)
639
640
641
        elif isinstance(value, (int, float)):
            assert v.shape == (1, 1, 1)
        elif isinstance(value, (list, tuple)):
Philip Meier's avatar
Philip Meier committed
642
            assert v.shape == (num_channels, 1, 1)
643

Philip Meier's avatar
Philip Meier committed
644
645
        assert 0 <= i <= height - h
        assert 0 <= j <= width - w
646
647
648
649
650


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
651
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


666
class TestToImage:
667
668
    @pytest.mark.parametrize(
        "inpt_type",
669
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
670
671
672
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
673
            "torchvision.transforms.v2.functional.to_image",
674
675
676
677
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
678
        transform = transforms.ToImage()
679
        transform(inpt)
680
        if inpt_type in (datapoints.BoundingBoxes, datapoints.Image, str, int):
681
682
683
684
685
686
687
688
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
689
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
690
691
    )
    def test__transform(self, inpt_type, mocker):
692
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
693
694
695
696

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
697
        if inpt_type in (PIL.Image.Image, datapoints.BoundingBoxes, str, int):
698
699
700
701
702
703
704
705
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
706
        [torch.Tensor, PIL.Image.Image, datapoints.Image, np.ndarray, datapoints.BoundingBoxes, str, int],
707
708
709
710
711
712
713
714
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
715
        if inpt_type in (datapoints.Image, torch.Tensor, datapoints.BoundingBoxes, str, int):
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
746
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
747
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
748
749
750


class TestRandomIoUCrop:
751
    @pytest.mark.parametrize("device", cpu_and_cuda())
752
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
753
754
755
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
756
        bboxes = datapoints.BoundingBoxes(
757
758
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
759
            canvas_size=size,
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
        image = datapoints.Image(torch.rand(1, 3, 4, 4))
Philip Meier's avatar
Philip Meier committed
792
        bboxes = datapoints.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
811
812
        size = (32, 24)
        image = make_image(size)
813
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
814
        masks = make_detection_mask(size, num_objects=6)
815
816
817
818
819
820
821
822
823
824
825

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
826
        assert isinstance(output_bboxes, datapoints.BoundingBoxes)
827
828
829
830
831
832
833
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
        assert isinstance(output_masks, datapoints.Mask)


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
834
835
    def test__get_params(self):
        canvas_size = (24, 32)
836
837
838
839
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
840
841

        sample = make_image(canvas_size)
842
843
844
845
846
847
848
849
850
851
852
853

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
854
855
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
856

Philip Meier's avatar
Philip Meier committed
857
858
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
859
860
861
862


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
863
864
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
865

866
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
867

Philip Meier's avatar
Philip Meier committed
868
        sample = make_image(canvas_size)
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
            datapoints.Image(122 * torch.ones(1, 3, 8, 8)),
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
909
            with pytest.raises(TypeError, match="does not support PIL images"):
910
911
912
913
914
915
916
917
918
919
920
921
922
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

923
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
            datapoints.Video(torch.zeros(1, 10, 3, 8, 8)),
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
970
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20))
971
972

    with pytest.warns(UserWarning, match=match):
973
        F.resize(datapoints.Video(tensor_video), (20, 20))
974
    with pytest.warns(UserWarning, match=match):
975
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20))
976
977
978
979
980
981
982
983
984
985
986
987
988

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

989
990
        F.resized_crop(datapoints.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(datapoints.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
991
992
993
994
995


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
996
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
997
998
999
1000
1001
1002
1003
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
1004
        assert is_pure_tensor(image)
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

1016
1017
1018
1019
1020
1021
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1022
1023
    t = transforms.Compose(
        [
1024
            transforms.RandomResizedCrop((224, 224), antialias=True),
1025
1026
1027
1028
1029
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
1030
            to_tensor,
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, datapoints.Image))
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
1057
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
1058
1059
1060
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
1061
1062
1063
1064
1065
1066
1067

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

1068
1069
1070
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
1071
            to_tensor,
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {datapoints.Mask: 0})
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
1085
            to_tensor,
1086
1087
1088
1089
1090
1091
1092
1093
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
1094
            to_tensor,
1095
1096
1097
1098
1099
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
1100
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), datapoints.Mask: 0}, p=1),
1101
1102
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1103
            to_tensor,
1104
1105
1106
1107
1108
1109
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
1110
            to_tensor,
1111
1112
1113
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
1114
        t += [transforms.SanitizeBoundingBoxes()]
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

    image = datapoints.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
1125
        assert is_pure_tensor(image)
1126
1127
1128
1129
1130
1131

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
Philip Meier's avatar
Philip Meier committed
1132
    boxes = datapoints.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

    masks = datapoints.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

1145
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not datapoints.Image:
1146
        assert is_pure_tensor(out["image"])
1147
1148
1149
1150
1151
1152
1153
1154
    else:
        assert isinstance(out["image"], datapoints.Image)
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
1155
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
1156
1157
1158
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
1159
        (True, "ssd"): 5,
1160
1161
1162
1163
1164
1165
1166
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
1167
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
1168
1169
1170
1171
1172
1173
1174
1175
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1203
    boxes = datapoints.BoundingBoxes(
1204
1205
        boxes,
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1206
        canvas_size=(H, W),
1207
1208
1209
    )

    masks = datapoints.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1210
1211
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1212
    sample = {
1213
        "image": input_img,
1214
1215
        "labels": labels,
        "boxes": boxes,
1216
        "whatever": whatever,
1217
1218
1219
1220
        "None": None,
        "masks": masks,
    }

1221
1222
1223
1224
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1225
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1226

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1242

1243
    assert isinstance(out_boxes, datapoints.BoundingBoxes)
1244
1245
    assert isinstance(out_masks, datapoints.Mask)

1246
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1247
        assert out_labels is labels
1248
    else:
1249
1250
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1251
        # This works because we conveniently set labels to arange(num_boxes)
1252
        assert out_labels.tolist() == valid_indices
1253
1254
1255
1256


def test_sanitize_bounding_boxes_errors():

1257
    good_bbox = datapoints.BoundingBoxes(
1258
1259
        [[0, 0, 10, 10]],
        format=datapoints.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1260
        canvas_size=(20, 20),
1261
1262
1263
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1264
        transforms.SanitizeBoundingBoxes(min_size=0)
1265
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1266
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1267
1268
1269

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1270
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1271
1272
1273

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1274
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1275
1276
1277

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1278
        transforms.SanitizeBoundingBoxes()(different_sizes)
1279

1280

Philip Meier's avatar
Philip Meier committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)