folder.py 6.84 KB
Newer Older
soumith's avatar
soumith committed
1
2
3
import torch.utils.data as data

from PIL import Image
4

soumith's avatar
soumith committed
5
6
import os
import os.path
7
import sys
soumith's avatar
soumith committed
8

9

10
11
def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.
12
13
14

    Args:
        filename (string): path to a file
15
        extensions (tuple of strings): extensions to consider (lowercase)
16
17

    Returns:
18
        bool: True if the filename ends with one of given extensions
19
    """
20
    return filename.lower().endswith(extensions)
soumith's avatar
soumith committed
21

22

23
24
25
26
27
28
29
30
31
32
33
34
def is_image_file(filename):
    """Checks if a file is an allowed image extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)


35
def make_dataset(dir, class_to_idx, extensions):
soumith's avatar
soumith committed
36
    images = []
37
    dir = os.path.expanduser(dir)
38
    for target in sorted(class_to_idx.keys()):
soumith's avatar
soumith committed
39
40
41
42
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

NC Cullen's avatar
NC Cullen committed
43
        for root, _, fnames in sorted(os.walk(d)):
44
            for fname in sorted(fnames):
45
                if has_file_allowed_extension(fname, extensions):
NC Cullen's avatar
NC Cullen committed
46
47
48
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
soumith's avatar
soumith committed
49
50
51

    return images

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
class DatasetFolder(data.Dataset):
    """A generic data loader where the samples are arranged in this way: ::

        root/class_x/xxx.ext
        root/class_x/xxy.ext
        root/class_x/xxz.ext

        root/class_y/123.ext
        root/class_y/nsdf3.ext
        root/class_y/asd932_.ext

    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
67
        extensions (tuple[string]): A list of allowed extensions.
68
69
70
71
72
73
74
75
76
77
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        samples (list): List of (sample path, class_index) tuples
78
        targets (list): The class_index value for each image in the dataset
79
80
81
    """

    def __init__(self, root, loader, extensions, transform=None, target_transform=None):
82
        classes, class_to_idx = self._find_classes(root)
83
84
85
86
87
88
89
90
91
92
93
94
        samples = make_dataset(root, class_to_idx, extensions)
        if len(samples) == 0:
            raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
                               "Supported extensions are: " + ",".join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
95
        self.targets = [s[1] for s in samples]
96
97
98

        self.transform = transform
        self.target_transform = target_transform
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    def _find_classes(self, dir):
        """
        Finds the class folders in a dataset.

        Args:
            dir (string): Root directory path.

        Returns:
            tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.

        Ensures:
            No class is a subdirectory of another.
        """
113
114
115
116
117
        if sys.version_info >= (3, 5):
            # Faster and available in Python 3.5 and above
            classes = [d.name for d in os.scandir(dir) if d.is_dir()]
        else:
            classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
118
119
120
        classes.sort()
        class_to_idx = {classes[i]: i for i in range(len(classes))}
        return classes, class_to_idx
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


153
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', 'webp')
154
155


156
def pil_loader(path):
157
158
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
159
160
        img = Image.open(f)
        return img.convert('RGB')
161
162


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


180
class ImageFolder(DatasetFolder):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    """A generic data loader where the images are arranged in this way: ::

        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png

        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png

    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """
204
205
    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
206
207
208
209
        super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                          transform=transform,
                                          target_transform=target_transform)
        self.imgs = self.samples