folder.py 4.38 KB
Newer Older
soumith's avatar
soumith committed
1
2
3
4
5
6
import torch.utils.data as data

from PIL import Image
import os
import os.path

7
8
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']

9

10
11
def is_image_file(filename):
    """Checks if a file is an image.
12
13
14
15
16
17
18
19

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
20
    return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)
soumith's avatar
soumith committed
21

22

soumith's avatar
soumith committed
23
def find_classes(dir):
NC Cullen's avatar
NC Cullen committed
24
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
soumith's avatar
soumith committed
25
26
27
28
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx

29

30
def make_dataset(dir, class_to_idx):
soumith's avatar
soumith committed
31
    images = []
32
    dir = os.path.expanduser(dir)
33
    for target in sorted(os.listdir(dir)):
soumith's avatar
soumith committed
34
35
36
37
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

NC Cullen's avatar
NC Cullen committed
38
        for root, _, fnames in sorted(os.walk(d)):
39
            for fname in sorted(fnames):
40
                if is_image_file(fname):
NC Cullen's avatar
NC Cullen committed
41
42
43
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
soumith's avatar
soumith committed
44
45
46

    return images

47

48
def pil_loader(path):
49
50
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
51
52
        img = Image.open(f)
        return img.convert('RGB')
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


72
class ImageFolder(data.Dataset):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    """A generic data loader where the images are arranged in this way: ::

        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png

        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png

    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """
96

97
98
    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        classes, class_to_idx = find_classes(root)
        imgs = make_dataset(root, class_to_idx)
        if len(imgs) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: " + root + "\n"
                               "Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))

        self.root = root
        self.imgs = imgs
        self.classes = classes
        self.class_to_idx = class_to_idx
        self.transform = transform
        self.target_transform = target_transform
        self.loader = loader

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        path, target = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        return len(self.imgs)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str