folder.py 5.84 KB
Newer Older
soumith's avatar
soumith committed
1
2
3
import torch.utils.data as data

from PIL import Image
4

soumith's avatar
soumith committed
5
6
7
import os
import os.path

8

9
10
def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.
11
12
13
14
15
16
17
18

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
19
    return any(filename_lower.endswith(ext) for ext in extensions)
soumith's avatar
soumith committed
20

21

soumith's avatar
soumith committed
22
def find_classes(dir):
NC Cullen's avatar
NC Cullen committed
23
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
soumith's avatar
soumith committed
24
25
26
27
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx

28

29
def make_dataset(dir, class_to_idx, extensions):
soumith's avatar
soumith committed
30
    images = []
31
    dir = os.path.expanduser(dir)
32
    for target in sorted(os.listdir(dir)):
soumith's avatar
soumith committed
33
34
35
36
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

NC Cullen's avatar
NC Cullen committed
37
        for root, _, fnames in sorted(os.walk(d)):
38
            for fname in sorted(fnames):
39
                if has_file_allowed_extension(fname, extensions):
NC Cullen's avatar
NC Cullen committed
40
41
42
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
soumith's avatar
soumith committed
43
44
45

    return images

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
class DatasetFolder(data.Dataset):
    """A generic data loader where the samples are arranged in this way: ::

        root/class_x/xxx.ext
        root/class_x/xxy.ext
        root/class_x/xxz.ext

        root/class_y/123.ext
        root/class_y/nsdf3.ext
        root/class_y/asd932_.ext

    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
        extensions (list[string]): A list of allowed extensions.
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        samples (list): List of (sample path, class_index) tuples
    """

    def __init__(self, root, loader, extensions, transform=None, target_transform=None):
        classes, class_to_idx = find_classes(root)
        samples = make_dataset(root, class_to_idx, extensions)
        if len(samples) == 0:
            raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
                               "Supported extensions are: " + ",".join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples

        self.transform = transform
        self.target_transform = target_transform

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


123
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
124
125


126
def pil_loader(path):
127
128
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
129
130
        img = Image.open(f)
        return img.convert('RGB')
131
132


133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


150
class ImageFolder(DatasetFolder):
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    """A generic data loader where the images are arranged in this way: ::

        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png

        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png

    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """
174
175
    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
176
177
178
179
        super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                          transform=transform,
                                          target_transform=target_transform)
        self.imgs = self.samples