test_datasets_video_utils.py 4.86 KB
Newer Older
1
2
3
import contextlib
import os
import torch
4
import pytest
5
6

from torchvision import io
7
from torchvision.datasets.video_utils import VideoClips, unfold
8

9
from common_utils import get_tmp_dir, assert_equal
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


@contextlib.contextmanager
def get_list_of_videos(num_videos=5, sizes=None, fps=None):
    with get_tmp_dir() as tmp_dir:
        names = []
        for i in range(num_videos):
            if sizes is None:
                size = 5 * (i + 1)
            else:
                size = sizes[i]
            if fps is None:
                f = 5
            else:
                f = fps[i]
25
            data = torch.randint(0, 256, (size, 300, 400, 3), dtype=torch.uint8)
26
27
28
29
30
31
32
            name = os.path.join(tmp_dir, "{}.mp4".format(i))
            names.append(name)
            io.write_video(name, data, fps=f)

        yield names


33
class TestVideo:
34
35
36
37
38
39
40
41
42

    def test_unfold(self):
        a = torch.arange(7)

        r = unfold(a, 3, 3, 1)
        expected = torch.tensor([
            [0, 1, 2],
            [3, 4, 5],
        ])
43
        assert_equal(r, expected)
44
45
46
47
48
49
50

        r = unfold(a, 3, 2, 1)
        expected = torch.tensor([
            [0, 1, 2],
            [2, 3, 4],
            [4, 5, 6]
        ])
51
        assert_equal(r, expected)
52
53
54
55
56
57

        r = unfold(a, 3, 2, 2)
        expected = torch.tensor([
            [0, 2, 4],
            [2, 4, 6],
        ])
58
        assert_equal(r, expected)
59

60
    @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av")
61
62
    def test_video_clips(self):
        with get_list_of_videos(num_videos=3) as video_list:
63
            video_clips = VideoClips(video_list, 5, 5, num_workers=2)
64
            assert video_clips.num_clips() == 1 + 2 + 3
65
66
            for i, (v_idx, c_idx) in enumerate([(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)]):
                video_idx, clip_idx = video_clips.get_clip_location(i)
67
68
                assert video_idx == v_idx
                assert clip_idx == c_idx
69

70
            video_clips = VideoClips(video_list, 6, 6)
71
            assert video_clips.num_clips() == 0 + 1 + 2
72
73
            for i, (v_idx, c_idx) in enumerate([(1, 0), (2, 0), (2, 1)]):
                video_idx, clip_idx = video_clips.get_clip_location(i)
74
75
                assert video_idx == v_idx
                assert clip_idx == c_idx
76

77
            video_clips = VideoClips(video_list, 6, 1)
78
            assert video_clips.num_clips() == 0 + (10 - 6 + 1) + (15 - 6 + 1)
79
80
            for i, v_idx, c_idx in [(0, 1, 0), (4, 1, 4), (5, 2, 0), (6, 2, 1)]:
                video_idx, clip_idx = video_clips.get_clip_location(i)
81
82
                assert video_idx == v_idx
                assert clip_idx == c_idx
83

84
    @pytest.mark.skipif(not io.video._av_available(), reason="this test requires av")
85
86
87
88
    def test_video_clips_custom_fps(self):
        with get_list_of_videos(num_videos=3, sizes=[12, 12, 12], fps=[3, 4, 6]) as video_list:
            num_frames = 4
            for fps in [1, 3, 4, 10]:
89
                video_clips = VideoClips(video_list, num_frames, num_frames, fps, num_workers=2)
90
91
                for i in range(video_clips.num_clips()):
                    video, audio, info, video_idx = video_clips.get_clip(i)
92
93
                    assert video.shape[0] == num_frames
                    assert info["video_fps"] == fps
94
95
96
97
98
99
100
101
102
103
104
105
                    # TODO add tests checking that the content is right

    def test_compute_clips_for_video(self):
        video_pts = torch.arange(30)
        # case 1: single clip
        num_frames = 13
        orig_fps = 30
        duration = float(len(video_pts)) / orig_fps
        new_fps = 13
        clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames,
                                                         orig_fps, new_fps)
        resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps)
106
107
108
        assert len(clips) == 1
        assert_equal(clips, idxs)
        assert_equal(idxs[0], resampled_idxs)
109
110
111
112
113
114
115
116
117

        # case 2: all frames appear only once
        num_frames = 4
        orig_fps = 30
        duration = float(len(video_pts)) / orig_fps
        new_fps = 12
        clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames,
                                                         orig_fps, new_fps)
        resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps)
118
119
120
        assert len(clips) == 3
        assert_equal(clips, idxs)
        assert_equal(idxs.flatten(), resampled_idxs)
121

122
123
124
125
        # case 3: frames aren't enough for a clip
        num_frames = 32
        orig_fps = 30
        new_fps = 13
126
        with pytest.warns(UserWarning):
127
128
            clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames,
                                                             orig_fps, new_fps)
129
130
        assert len(clips) == 0
        assert len(idxs) == 0
131

132
133

if __name__ == '__main__':
134
    pytest.main([__file__])