test_datasets_video_utils.py 5.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import contextlib
import os
import torch
import unittest

from torchvision import io
from torchvision.datasets.video_utils import VideoClips, unfold, RandomClipSampler

from common_utils import get_tmp_dir


@contextlib.contextmanager
def get_list_of_videos(num_videos=5, sizes=None, fps=None):
    with get_tmp_dir() as tmp_dir:
        names = []
        for i in range(num_videos):
            if sizes is None:
                size = 5 * (i + 1)
            else:
                size = sizes[i]
            if fps is None:
                f = 5
            else:
                f = fps[i]
            data = torch.randint(0, 255, (size, 300, 400, 3), dtype=torch.uint8)
            name = os.path.join(tmp_dir, "{}.mp4".format(i))
            names.append(name)
            io.write_video(name, data, fps=f)

        yield names


class Tester(unittest.TestCase):

    def test_unfold(self):
        a = torch.arange(7)

        r = unfold(a, 3, 3, 1)
        expected = torch.tensor([
            [0, 1, 2],
            [3, 4, 5],
        ])
        self.assertTrue(r.equal(expected))

        r = unfold(a, 3, 2, 1)
        expected = torch.tensor([
            [0, 1, 2],
            [2, 3, 4],
            [4, 5, 6]
        ])
        self.assertTrue(r.equal(expected))

        r = unfold(a, 3, 2, 2)
        expected = torch.tensor([
            [0, 2, 4],
            [2, 4, 6],
        ])
        self.assertTrue(r.equal(expected))

    def test_video_clips(self):
        with get_list_of_videos(num_videos=3) as video_list:
            video_clips = VideoClips(video_list, 5, 5)
            self.assertEqual(video_clips.num_clips(), 1 + 2 + 3)
            for i, (v_idx, c_idx) in enumerate([(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)]):
                video_idx, clip_idx = video_clips.get_clip_location(i)
                self.assertEqual(video_idx, v_idx)
                self.assertEqual(clip_idx, c_idx)

            video_clips = VideoClips(video_list, 6, 6)
            self.assertEqual(video_clips.num_clips(), 0 + 1 + 2)
            for i, (v_idx, c_idx) in enumerate([(1, 0), (2, 0), (2, 1)]):
                video_idx, clip_idx = video_clips.get_clip_location(i)
                self.assertEqual(video_idx, v_idx)
                self.assertEqual(clip_idx, c_idx)

            video_clips = VideoClips(video_list, 6, 1)
            self.assertEqual(video_clips.num_clips(), 0 + (10 - 6 + 1) + (15 - 6 + 1))
            for i, v_idx, c_idx in [(0, 1, 0), (4, 1, 4), (5, 2, 0), (6, 2, 1)]:
                video_idx, clip_idx = video_clips.get_clip_location(i)
                self.assertEqual(video_idx, v_idx)
                self.assertEqual(clip_idx, c_idx)

    def test_video_sampler(self):
        with get_list_of_videos(num_videos=3, sizes=[25, 25, 25]) as video_list:
            video_clips = VideoClips(video_list, 5, 5)
            sampler = RandomClipSampler(video_clips, 3)
            self.assertEqual(len(sampler), 3 * 3)
            indices = torch.tensor(list(iter(sampler)))
            videos = indices // 5
            v_idxs, count = torch.unique(videos, return_counts=True)
            self.assertTrue(v_idxs.equal(torch.tensor([0, 1, 2])))
            self.assertTrue(count.equal(torch.tensor([3, 3, 3])))

    def test_video_sampler_unequal(self):
        with get_list_of_videos(num_videos=3, sizes=[10, 25, 25]) as video_list:
            video_clips = VideoClips(video_list, 5, 5)
            sampler = RandomClipSampler(video_clips, 3)
            self.assertEqual(len(sampler), 2 + 3 + 3)
            indices = list(iter(sampler))
            self.assertIn(0, indices)
            self.assertIn(1, indices)
            # remove elements of the first video, to simplify testing
            indices.remove(0)
            indices.remove(1)
            indices = torch.tensor(indices) - 2
            videos = indices // 5
            v_idxs, count = torch.unique(videos, return_counts=True)
            self.assertTrue(v_idxs.equal(torch.tensor([0, 1])))
            self.assertTrue(count.equal(torch.tensor([3, 3])))

    def test_video_clips_custom_fps(self):
        with get_list_of_videos(num_videos=3, sizes=[12, 12, 12], fps=[3, 4, 6]) as video_list:
            num_frames = 4
            for fps in [1, 3, 4, 10]:
                video_clips = VideoClips(video_list, num_frames, num_frames, fps)
                for i in range(video_clips.num_clips()):
                    video, audio, info, video_idx = video_clips.get_clip(i)
                    self.assertEqual(video.shape[0], num_frames)
                    self.assertEqual(info["video_fps"], fps)
                    # TODO add tests checking that the content is right

    def test_compute_clips_for_video(self):
        video_pts = torch.arange(30)
        # case 1: single clip
        num_frames = 13
        orig_fps = 30
        duration = float(len(video_pts)) / orig_fps
        new_fps = 13
        clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames,
                                                         orig_fps, new_fps)
        resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps)
        self.assertEqual(len(clips), 1)
        self.assertTrue(clips.equal(idxs))
        self.assertTrue(idxs[0].equal(resampled_idxs))

        # case 2: all frames appear only once
        num_frames = 4
        orig_fps = 30
        duration = float(len(video_pts)) / orig_fps
        new_fps = 12
        clips, idxs = VideoClips.compute_clips_for_video(video_pts, num_frames, num_frames,
                                                         orig_fps, new_fps)
        resampled_idxs = VideoClips._resample_video_idx(int(duration * new_fps), orig_fps, new_fps)
        self.assertEqual(len(clips), 3)
        self.assertTrue(clips.equal(idxs))
        self.assertTrue(idxs.flatten().equal(resampled_idxs))


if __name__ == '__main__':
    unittest.main()