functional_tensor.py 14.1 KB
Newer Older
1
import torch
2
from torch import Tensor
3
from torch.jit.annotations import List, BroadcastingList2
4
5


6
def _is_tensor_a_torch_image(input):
7
    return input.ndim >= 2
8
9
10
11


def vflip(img):
    # type: (Tensor) -> Tensor
12
13
14
    """Vertically flip the given the Image Tensor.

    Args:
15
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
16
17
18
19

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
20
    if not _is_tensor_a_torch_image(img):
21
22
        raise TypeError('tensor is not a torch image.')

23
    return img.flip(-2)
24
25


26
27
def hflip(img):
    # type: (Tensor) -> Tensor
28
29
30
    """Horizontally flip the given the Image Tensor.

    Args:
31
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
32
33
34
35

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
36
    if not _is_tensor_a_torch_image(img):
37
38
        raise TypeError('tensor is not a torch image.')

39
    return img.flip(-1)
ekka's avatar
ekka committed
40
41
42


def crop(img, top, left, height, width):
43
    # type: (Tensor, int, int, int, int) -> Tensor
ekka's avatar
ekka committed
44
    """Crop the given Image Tensor.
45

ekka's avatar
ekka committed
46
47
48
49
50
51
    Args:
        img (Tensor): Image to be cropped in the form [C, H, W]. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
52

ekka's avatar
ekka committed
53
54
55
    Returns:
        Tensor: Cropped image.
    """
56
    if not _is_tensor_a_torch_image(img):
ekka's avatar
ekka committed
57
58
59
        raise TypeError('tensor is not a torch image.')

    return img[..., top:top + height, left:left + width]
60
61


62
def rgb_to_grayscale(img):
63
    # type: (Tensor) -> Tensor
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    """Convert the given RGB Image Tensor to Grayscale.
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].

    Returns:
        Tensor: Grayscale image.

    """
    if img.shape[0] != 3:
        raise TypeError('Input Image does not contain 3 Channels')

    return (0.2989 * img[0] + 0.5870 * img[1] + 0.1140 * img[2]).to(img.dtype)


81
def adjust_brightness(img, brightness_factor):
82
    # type: (Tensor, float) -> Tensor
83
84
85
86
87
88
89
90
91
92
93
    """Adjust brightness of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
94
    if not _is_tensor_a_torch_image(img):
95
96
        raise TypeError('tensor is not a torch image.')

97
    return _blend(img, torch.zeros_like(img), brightness_factor)
98
99
100


def adjust_contrast(img, contrast_factor):
101
    # type: (Tensor, float) -> Tensor
102
103
104
105
106
107
108
109
110
111
112
    """Adjust contrast of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
113
    if not _is_tensor_a_torch_image(img):
114
115
        raise TypeError('tensor is not a torch image.')

116
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
117
118
119
120

    return _blend(img, mean, contrast_factor)


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def adjust_hue(img, hue_factor):
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue

    Args:
        img (Tensor): Image to be adjusted. Image type is either uint8 or float.
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
         Tensor: Hue adjusted image.
    """
    if not(-0.5 <= hue_factor <= 0.5):
        raise ValueError('hue_factor ({}) is not in [-0.5, 0.5].'.format(hue_factor))

    if not _is_tensor_a_torch_image(img):
        raise TypeError('tensor is not a torch image.')

    orig_dtype = img.dtype
    if img.dtype == torch.uint8:
        img = img.to(dtype=torch.float32) / 255.0

    img = _rgb2hsv(img)
    h, s, v = img.unbind(0)
    h += hue_factor
    h = h % 1.0
    img = torch.stack((h, s, v))
    img_hue_adj = _hsv2rgb(img)

    if orig_dtype == torch.uint8:
        img_hue_adj = (img_hue_adj * 255.0).to(dtype=orig_dtype)

    return img_hue_adj


169
def adjust_saturation(img, saturation_factor):
170
    # type: (Tensor, float) -> Tensor
171
172
173
174
175
176
177
178
179
180
181
    """Adjust color saturation of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        Tensor: Saturation adjusted image.
    """
182
    if not _is_tensor_a_torch_image(img):
183
184
        raise TypeError('tensor is not a torch image.')

185
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
186
187


188
def center_crop(img, output_size):
189
    # type: (Tensor, BroadcastingList2[int]) -> Tensor
190
191
192
193
194
195
196
197
198
199
    """Crop the Image Tensor and resize it to desired size.

    Args:
        img (Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
200
    if not _is_tensor_a_torch_image(img):
201
202
203
204
205
206
207
208
209
210
211
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))

    return crop(img, crop_top, crop_left, crop_height, crop_width)


def five_crop(img, size):
212
    # type: (Tensor, BroadcastingList2[int]) -> List[Tensor]
213
214
    """Crop the given Image Tensor into four corners and the central crop.
    .. Note::
215
        This transform returns a List of Tensors and there may be a
216
217
218
219
220
221
222
223
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.

    Returns:
224
       List: List (tl, tr, bl, br, center)
225
226
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
227
    if not _is_tensor_a_torch_image(img):
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

244
    return [tl, tr, bl, br, center]
245
246
247


def ten_crop(img, size, vertical_flip=False):
248
    # type: (Tensor, BroadcastingList2[int], bool) -> List[Tensor]
249
250
251
    """Crop the given Image Tensor into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
    .. Note::
252
        This transform returns a List of images and there may be a
253
254
255
256
257
258
259
260
261
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
262
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
263
264
265
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
266
    if not _is_tensor_a_torch_image(img):
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


282
def _blend(img1, img2, ratio):
283
284
    # type: (Tensor, Tensor, float) -> Tensor
    bound = 1 if img1.dtype in [torch.half, torch.float32, torch.float64] else 255
285
    return (ratio * img1 + (1 - ratio) * img2).clamp(0, bound).to(img1.dtype)
286
287
288
289
290


def _rgb2hsv(img):
    r, g, b = img.unbind(0)

291
292
293
294
295
296
297
298
299
300
301
302
    maxc = torch.max(img, dim=0).values
    minc = torch.min(img, dim=0).values

    # The algorithm erases S and H channel where `maxc = minc`. This avoids NaN
    # from happening in the results, because
    #   + S channel has division by `maxc`, which is zero only if `maxc = minc`
    #   + H channel has division by `(maxc - minc)`.
    #
    # Instead of overwriting NaN afterwards, we just prevent it from occuring so
    # we don't need to deal with it in case we save the NaN in a buffer in
    # backprop, if it is ever supported, but it doesn't hurt to do so.
    eqc = maxc == minc
303
304

    cr = maxc - minc
305
306
307
308
309
310
311
312
313
314
    # Since `eqc => cr = 0`, replacing denominator with 1 when `eqc` is fine.
    s = cr / torch.where(eqc, maxc.new_ones(()), maxc)
    # Note that `eqc => maxc = minc = r = g = b`. So the following calculation
    # of `h` would reduce to `bc - gc + 2 + rc - bc + 4 + rc - bc = 6` so it
    # would not matter what values `rc`, `gc`, and `bc` have here, and thus
    # replacing denominator with 1 when `eqc` is fine.
    cr_divisor = torch.where(eqc, maxc.new_ones(()), cr)
    rc = (maxc - r) / cr_divisor
    gc = (maxc - g) / cr_divisor
    bc = (maxc - b) / cr_divisor
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

    hr = (maxc == r) * (bc - gc)
    hg = ((maxc == g) & (maxc != r)) * (2.0 + rc - bc)
    hb = ((maxc != g) & (maxc != r)) * (4.0 + gc - rc)
    h = (hr + hg + hb)
    h = torch.fmod((h / 6.0 + 1.0), 1.0)
    return torch.stack((h, s, maxc))


def _hsv2rgb(img):
    h, s, v = img.unbind(0)
    i = torch.floor(h * 6.0)
    f = (h * 6.0) - i
    i = i.to(dtype=torch.int32)

    p = torch.clamp((v * (1.0 - s)), 0.0, 1.0)
    q = torch.clamp((v * (1.0 - s * f)), 0.0, 1.0)
    t = torch.clamp((v * (1.0 - s * (1.0 - f))), 0.0, 1.0)
    i = i % 6

    mask = i == torch.arange(6)[:, None, None]

    a1 = torch.stack((v, q, p, p, t, v))
    a2 = torch.stack((t, v, v, q, p, p))
    a3 = torch.stack((p, p, t, v, v, q))
    a4 = torch.stack((a1, a2, a3))

    return torch.einsum("ijk, xijk -> xjk", mask.to(dtype=img.dtype), a4)
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403


def pad(img: Tensor, padding: List[int], fill: int, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given Tensor Image on all sides with specified padding mode and fill value.

    Args:
        img (Tensor): Image to be padded.
        padding (int or tuple or list): Padding on each border. If a single int is provided this
            is used to pad all borders. If a tuple or list of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple or list of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively. In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
        fill (int): Pixel fill value for constant fill. Default is 0.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Only "constant" is supported for Tensors as of now.

            - constant: pads with a constant value, this value is specified with fill

    Returns:
        Tensor: Padded image.
    """
    if not _is_tensor_a_torch_image(img):
        raise TypeError("tensor is not a torch image.")

    if not isinstance(padding, (int, tuple, list)):
        raise TypeError("Got inappropriate padding arg")
    if not isinstance(fill, (int, float)):
        raise TypeError("Got inappropriate fill arg")
    if not isinstance(padding_mode, str):
        raise TypeError("Got inappropriate padding_mode arg")

    if isinstance(padding, tuple):
        padding = list(padding)

    if isinstance(padding, list) and len(padding) not in [1, 2, 4]:
        raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
                         "{} element tuple".format(len(padding)))

    if padding_mode not in ["constant", ]:
        raise ValueError("Only constant padding_mode supported for torch tensors")

    if isinstance(padding, int):
        if torch.jit.is_scripting():
            raise ValueError("padding can't be an int while torchscripting, set it as a list [value, ]")
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 1:
        pad_left = pad_right = pad_top = pad_bottom = padding[0]
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    p = [pad_left, pad_right, pad_top, pad_bottom]

    img = torch.nn.functional.pad(img, p, mode=padding_mode, value=float(fill))
    return img