functional_tensor.py 7.95 KB
Newer Older
1
2
import torch
import torchvision.transforms.functional as F
3
4
from torch import Tensor
from torch.jit.annotations import Optional, List, BroadcastingList2, Tuple
5
6


7
8
9
10
11
12
def _is_tensor_a_torch_image(input):
    return len(input.shape) == 3


def vflip(img):
    # type: (Tensor) -> Tensor
13
14
15
    """Vertically flip the given the Image Tensor.

    Args:
16
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
17
18
19
20

    Returns:
        Tensor:  Vertically flipped image Tensor.
    """
21
    if not _is_tensor_a_torch_image(img):
22
23
        raise TypeError('tensor is not a torch image.')

24
    return img.flip(-2)
25
26


27
28
def hflip(img):
    # type: (Tensor) -> Tensor
29
30
31
    """Horizontally flip the given the Image Tensor.

    Args:
32
        img (Tensor): Image Tensor to be flipped in the form [C, H, W].
33
34
35
36

    Returns:
        Tensor:  Horizontally flipped image Tensor.
    """
37
    if not _is_tensor_a_torch_image(img):
38
39
        raise TypeError('tensor is not a torch image.')

40
    return img.flip(-1)
ekka's avatar
ekka committed
41
42
43


def crop(img, top, left, height, width):
44
    # type: (Tensor, int, int, int, int) -> Tensor
ekka's avatar
ekka committed
45
    """Crop the given Image Tensor.
46

ekka's avatar
ekka committed
47
48
49
50
51
52
    Args:
        img (Tensor): Image to be cropped in the form [C, H, W]. (0,0) denotes the top left corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
53

ekka's avatar
ekka committed
54
55
56
    Returns:
        Tensor: Cropped image.
    """
57
    if not _is_tensor_a_torch_image(img):
ekka's avatar
ekka committed
58
59
60
        raise TypeError('tensor is not a torch image.')

    return img[..., top:top + height, left:left + width]
61
62


63
def rgb_to_grayscale(img):
64
    # type: (Tensor) -> Tensor
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    """Convert the given RGB Image Tensor to Grayscale.
    For RGB to Grayscale conversion, ITU-R 601-2 luma transform is performed which
    is L = R * 0.2989 + G * 0.5870 + B * 0.1140

    Args:
        img (Tensor): Image to be converted to Grayscale in the form [C, H, W].

    Returns:
        Tensor: Grayscale image.

    """
    if img.shape[0] != 3:
        raise TypeError('Input Image does not contain 3 Channels')

    return (0.2989 * img[0] + 0.5870 * img[1] + 0.1140 * img[2]).to(img.dtype)


82
def adjust_brightness(img, brightness_factor):
83
    # type: (Tensor, float) -> Tensor
84
85
86
87
88
89
90
91
92
93
94
    """Adjust brightness of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
        Tensor: Brightness adjusted image.
    """
95
    if not _is_tensor_a_torch_image(img):
96
97
        raise TypeError('tensor is not a torch image.')

98
    return _blend(img, torch.zeros_like(img), brightness_factor)
99
100
101


def adjust_contrast(img, contrast_factor):
102
    # type: (Tensor, float) -> Tensor
103
104
105
106
107
108
109
110
111
112
113
    """Adjust contrast of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
        Tensor: Contrast adjusted image.
    """
114
    if not _is_tensor_a_torch_image(img):
115
116
        raise TypeError('tensor is not a torch image.')

117
    mean = torch.mean(rgb_to_grayscale(img).to(torch.float))
118
119
120
121
122

    return _blend(img, mean, contrast_factor)


def adjust_saturation(img, saturation_factor):
123
    # type: (Tensor, float) -> Tensor
124
125
126
127
128
129
130
131
132
133
134
    """Adjust color saturation of an RGB image.

    Args:
        img (Tensor): Image to be adjusted.
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
        Tensor: Saturation adjusted image.
    """
135
    if not _is_tensor_a_torch_image(img):
136
137
        raise TypeError('tensor is not a torch image.')

138
    return _blend(img, rgb_to_grayscale(img), saturation_factor)
139
140


141
def center_crop(img, output_size):
142
    # type: (Tensor, BroadcastingList2[int]) -> Tensor
143
144
145
146
147
148
149
150
151
152
    """Crop the Image Tensor and resize it to desired size.

    Args:
        img (Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
        output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions

    Returns:
            Tensor: Cropped image.
    """
153
    if not _is_tensor_a_torch_image(img):
154
155
156
157
158
159
160
161
162
163
164
        raise TypeError('tensor is not a torch image.')

    _, image_width, image_height = img.size()
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))

    return crop(img, crop_top, crop_left, crop_height, crop_width)


def five_crop(img, size):
165
    # type: (Tensor, BroadcastingList2[int]) -> List[Tensor]
166
167
    """Crop the given Image Tensor into four corners and the central crop.
    .. Note::
168
        This transform returns a List of Tensors and there may be a
169
170
171
172
173
174
175
176
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
           int instead of sequence like (h, w), a square crop (size, size) is
           made.

    Returns:
177
       List: List (tl, tr, bl, br, center)
178
179
                Corresponding top left, top right, bottom left, bottom right and center crop.
    """
180
    if not _is_tensor_a_torch_image(img):
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."

    _, image_width, image_height = img.size()
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

    tl = crop(img, 0, 0, crop_width, crop_height)
    tr = crop(img, image_width - crop_width, 0, image_width, crop_height)
    bl = crop(img, 0, image_height - crop_height, crop_width, image_height)
    br = crop(img, image_width - crop_width, image_height - crop_height, image_width, image_height)
    center = center_crop(img, (crop_height, crop_width))

197
    return [tl, tr, bl, br, center]
198
199
200


def ten_crop(img, size, vertical_flip=False):
201
    # type: (Tensor, BroadcastingList2[int], bool) -> List[Tensor]
202
203
204
    """Crop the given Image Tensor into four corners and the central crop plus the
        flipped version of these (horizontal flipping is used by default).
    .. Note::
205
        This transform returns a List of images and there may be a
206
207
208
209
210
211
212
213
214
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
       size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
       vertical_flip (bool): Use vertical flipping instead of horizontal

    Returns:
215
       List: List (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
216
217
218
                Corresponding top left, top right, bottom left, bottom right and center crop
                and same for the flipped image's tensor.
    """
219
    if not _is_tensor_a_torch_image(img):
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
        raise TypeError('tensor is not a torch image.')

    assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)

    return first_five + second_five


235
def _blend(img1, img2, ratio):
236
237
    # type: (Tensor, Tensor, float) -> Tensor
    bound = 1 if img1.dtype in [torch.half, torch.float32, torch.float64] else 255
238
    return (ratio * img1 + (1 - ratio) * img2).clamp(0, bound).to(img1.dtype)