backbone_utils.py 7.92 KB
Newer Older
1
import warnings
2
from typing import List, Optional
3

4
from torch import nn
5
from torchvision.ops import misc as misc_nn_ops
6
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool, ExtraFPNBlock
7

8
from .. import mobilenet
9
from .. import resnet
10
from .._utils import IntermediateLayerGetter
11
12


eellison's avatar
eellison committed
13
class BackboneWithFPN(nn.Module):
14
15
16
17
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
18
    The same limitations of IntermediateLayerGetter apply here.
19
    Args:
20
21
22
23
24
25
26
27
28
29
30
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
31

32
    def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None):
eellison's avatar
eellison committed
33
        super(BackboneWithFPN, self).__init__()
34
35
36
37

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
38
39
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
40
41
            in_channels_list=in_channels_list,
            out_channels=out_channels,
42
            extra_blocks=extra_blocks,
43
44
45
        )
        self.out_channels = out_channels

eellison's avatar
eellison committed
46
47
48
49
50
    def forward(self, x):
        x = self.body(x)
        x = self.fpn(x)
        return x

51

52
53
54
55
56
57
def resnet_fpn_backbone(
    backbone_name,
    pretrained,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=3,
    returned_layers=None,
58
    extra_blocks=None,
59
):
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

79
    Args:
80
81
        backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
82
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
83
84
85
86
        norm_layer (torchvision.ops): it is recommended to use the default value. For details visit:
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
87
88
89
90
91
92
93
        returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
            By default all layers are returned.
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names. By
            default a ``LastLevelMaxPool`` is used.
94
    """
95
    backbone = resnet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer)
96
    return _resnet_backbone_config(backbone, trainable_layers, returned_layers, extra_blocks)
97

98
99
100
101
102
103
104

def _resnet_backbone_config(
    backbone: resnet.ResNet,
    trainable_layers: int,
    returned_layers: Optional[List[int]],
    extra_blocks: Optional[ExtraFPNBlock],
):
105
    # select layers that wont be frozen
106
    assert 0 <= trainable_layers <= 5
107
    layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers]
108
    if trainable_layers == 5:
109
        layers_to_train.append("bn1")
110
    for name, parameter in backbone.named_parameters():
111
        if all([not name.startswith(layer) for layer in layers_to_train]):
112
113
            parameter.requires_grad_(False)

114
115
116
117
118
119
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
    assert min(returned_layers) > 0 and max(returned_layers) < 5
120
    return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)}
121

122
    in_channels_stage2 = backbone.inplanes // 8
123
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
124
    out_channels = 256
125
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
126
127


128
def _validate_trainable_layers(pretrained, trainable_backbone_layers, max_value, default_value):
129
130
131
132
133
134
    # dont freeze any layers if pretrained model or backbone is not used
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
135
136
                "falling back to trainable_backbone_layers={} so that all layers are trainable".format(max_value)
            )
137
138
139
        trainable_backbone_layers = max_value

    # by default freeze first blocks
140
    if trainable_backbone_layers is None:
141
142
        trainable_backbone_layers = default_value
    assert 0 <= trainable_backbone_layers <= max_value
143
    return trainable_backbone_layers
144
145
146
147
148
149
150
151
152


def mobilenet_backbone(
    backbone_name,
    pretrained,
    fpn,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=2,
    returned_layers=None,
153
    extra_blocks=None,
154
155
156
):
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer).features

157
    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
158
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
159
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
160
161
162
163
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
164
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
165
166
167
168
169
170
171
172
173
174
175
176
177

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

    out_channels = 256
    if fpn:
        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

        if returned_layers is None:
            returned_layers = [num_stages - 2, num_stages - 1]
        assert min(returned_layers) >= 0 and max(returned_layers) < num_stages
178
        return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)}
179
180
181
182
183
184
185
186
187
188
189

        in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
        return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
    else:
        m = nn.Sequential(
            backbone,
            # depthwise linear combination of channels to reduce their size
            nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
        )
        m.out_channels = out_channels
        return m