backbone_utils.py 7.14 KB
Newer Older
1
import warnings
2
3
4
5
6
from torch import nn
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool

from torchvision.ops import misc as misc_nn_ops
from .._utils import IntermediateLayerGetter
7
from .. import mobilenet
8
9
10
from .. import resnet


eellison's avatar
eellison committed
11
class BackboneWithFPN(nn.Module):
12
13
14
15
16
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
    The same limitations of IntermediatLayerGetter apply here.
17
    Args:
18
19
20
21
22
23
24
25
26
27
28
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
29
    def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None):
eellison's avatar
eellison committed
30
        super(BackboneWithFPN, self).__init__()
31
32
33
34

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
35
36
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
37
38
            in_channels_list=in_channels_list,
            out_channels=out_channels,
39
            extra_blocks=extra_blocks,
40
41
42
        )
        self.out_channels = out_channels

eellison's avatar
eellison committed
43
44
45
46
47
    def forward(self, x):
        x = self.body(x)
        x = self.fpn(x)
        return x

48

49
50
51
52
53
54
55
56
def resnet_fpn_backbone(
    backbone_name,
    pretrained,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=3,
    returned_layers=None,
    extra_blocks=None
):
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

76
    Args:
77
78
79
80
81
82
83
84
        backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
        norm_layer (torchvision.ops): it is recommended to use the default value. For details visit:
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
    """
85
86
87
88
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained,
        norm_layer=norm_layer)

89
    # select layers that wont be frozen
90
    assert 0 <= trainable_layers <= 5
91
92
    layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
    # freeze layers only if pretrained backbone is used
93
    for name, parameter in backbone.named_parameters():
94
        if all([not name.startswith(layer) for layer in layers_to_train]):
95
96
            parameter.requires_grad_(False)

97
98
99
100
101
102
103
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
    assert min(returned_layers) > 0 and max(returned_layers) < 5
    return_layers = {f'layer{k}': str(v) for v, k in enumerate(returned_layers)}
104

105
    in_channels_stage2 = backbone.inplanes // 8
106
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
107
    out_channels = 256
108
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
109
110


111
def _validate_trainable_layers(pretrained, trainable_backbone_layers, max_value, default_value):
112
113
114
115
116
117
    # dont freeze any layers if pretrained model or backbone is not used
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
118
119
120
121
                "falling back to trainable_backbone_layers={} so that all layers are trainable".format(max_value))
        trainable_backbone_layers = max_value

    # by default freeze first blocks
122
    if trainable_backbone_layers is None:
123
124
        trainable_backbone_layers = default_value
    assert 0 <= trainable_backbone_layers <= max_value
125
    return trainable_backbone_layers
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172


def mobilenet_backbone(
    backbone_name,
    pretrained,
    fpn,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=2,
    returned_layers=None,
    extra_blocks=None
):
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer).features

    # Gather the indeces of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "is_strided", False)] + [len(backbone) - 1]
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
    freeze_before = num_stages if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]

    # freeze layers only if pretrained backbone is used
    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

    out_channels = 256
    if fpn:
        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

        if returned_layers is None:
            returned_layers = [num_stages - 2, num_stages - 1]
        assert min(returned_layers) >= 0 and max(returned_layers) < num_stages
        return_layers = {f'{stage_indices[k]}': str(v) for v, k in enumerate(returned_layers)}

        in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
        return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
    else:
        m = nn.Sequential(
            backbone,
            # depthwise linear combination of channels to reduce their size
            nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
        )
        m.out_channels = out_channels
        return m