backbone_utils.py 7.65 KB
Newer Older
1
import warnings
2
3
4
5
6
from torch import nn
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool

from torchvision.ops import misc as misc_nn_ops
from .._utils import IntermediateLayerGetter
7
from .. import mobilenet
8
9
10
from .. import resnet


eellison's avatar
eellison committed
11
class BackboneWithFPN(nn.Module):
12
13
14
15
16
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
    The same limitations of IntermediatLayerGetter apply here.
17
    Args:
18
19
20
21
22
23
24
25
26
27
28
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
29
    def __init__(self, backbone, return_layers, in_channels_list, out_channels, extra_blocks=None):
eellison's avatar
eellison committed
30
        super(BackboneWithFPN, self).__init__()
31
32
33
34

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
35
36
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
37
38
            in_channels_list=in_channels_list,
            out_channels=out_channels,
39
            extra_blocks=extra_blocks,
40
41
42
        )
        self.out_channels = out_channels

eellison's avatar
eellison committed
43
44
45
46
47
    def forward(self, x):
        x = self.body(x)
        x = self.fpn(x)
        return x

48

49
50
51
52
53
54
55
56
def resnet_fpn_backbone(
    backbone_name,
    pretrained,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=3,
    returned_layers=None,
    extra_blocks=None
):
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

76
    Args:
77
78
        backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
79
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
80
81
82
83
        norm_layer (torchvision.ops): it is recommended to use the default value. For details visit:
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
84
85
86
87
88
89
90
        returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
            By default all layers are returned.
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names. By
            default a ``LastLevelMaxPool`` is used.
91
    """
92
93
94
95
    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained,
        norm_layer=norm_layer)

96
    # select layers that wont be frozen
97
    assert 0 <= trainable_layers <= 5
98
99
    layers_to_train = ['layer4', 'layer3', 'layer2', 'layer1', 'conv1'][:trainable_layers]
    # freeze layers only if pretrained backbone is used
100
    for name, parameter in backbone.named_parameters():
101
        if all([not name.startswith(layer) for layer in layers_to_train]):
102
103
            parameter.requires_grad_(False)

104
105
106
107
108
109
110
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
    assert min(returned_layers) > 0 and max(returned_layers) < 5
    return_layers = {f'layer{k}': str(v) for v, k in enumerate(returned_layers)}
111

112
    in_channels_stage2 = backbone.inplanes // 8
113
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
114
    out_channels = 256
115
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
116
117


118
def _validate_trainable_layers(pretrained, trainable_backbone_layers, max_value, default_value):
119
120
121
122
123
124
    # dont freeze any layers if pretrained model or backbone is not used
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
125
126
127
128
                "falling back to trainable_backbone_layers={} so that all layers are trainable".format(max_value))
        trainable_backbone_layers = max_value

    # by default freeze first blocks
129
    if trainable_backbone_layers is None:
130
131
        trainable_backbone_layers = default_value
    assert 0 <= trainable_backbone_layers <= max_value
132
    return trainable_backbone_layers
133
134
135
136
137
138
139
140
141
142
143
144
145


def mobilenet_backbone(
    backbone_name,
    pretrained,
    fpn,
    norm_layer=misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers=2,
    returned_layers=None,
    extra_blocks=None
):
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer).features

146
    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
147
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
148
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
    freeze_before = num_stages if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]

    # freeze layers only if pretrained backbone is used
    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

    out_channels = 256
    if fpn:
        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

        if returned_layers is None:
            returned_layers = [num_stages - 2, num_stages - 1]
        assert min(returned_layers) >= 0 and max(returned_layers) < num_stages
        return_layers = {f'{stage_indices[k]}': str(v) for v, k in enumerate(returned_layers)}

        in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
        return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
    else:
        m = nn.Sequential(
            backbone,
            # depthwise linear combination of channels to reduce their size
            nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
        )
        m.out_channels = out_channels
        return m