googlenet.py 12.6 KB
Newer Older
1
2
import warnings
from collections import namedtuple
3
from functools import partial
4
5
from typing import Optional, Tuple, List, Callable, Any

6
7
8
import torch
import torch.nn as nn
import torch.nn.functional as F
9
from torch import Tensor
10

11
from ..transforms._presets import ImageClassification
12
from ..utils import _log_api_usage_once
13
14
15
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
16
17


18
19
__all__ = ["GoogLeNet", "GoogLeNetOutputs", "_GoogLeNetOutputs", "GoogLeNet_Weights", "googlenet"]

20

21
22
GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"])
GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]}
23
24
25
26

# Script annotations failed with _GoogleNetOutputs = namedtuple ...
# _GoogLeNetOutputs set here for backwards compat
_GoogLeNetOutputs = GoogLeNetOutputs
27

28
29

class GoogLeNet(nn.Module):
30
    __constants__ = ["aux_logits", "transform_input"]
31

32
33
34
35
36
37
    def __init__(
        self,
        num_classes: int = 1000,
        aux_logits: bool = True,
        transform_input: bool = False,
        init_weights: Optional[bool] = None,
38
        blocks: Optional[List[Callable[..., nn.Module]]] = None,
39
40
        dropout: float = 0.2,
        dropout_aux: float = 0.7,
41
    ) -> None:
42
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
43
        _log_api_usage_once(self)
44
45
        if blocks is None:
            blocks = [BasicConv2d, Inception, InceptionAux]
46
        if init_weights is None:
47
48
49
50
51
52
            warnings.warn(
                "The default weight initialization of GoogleNet will be changed in future releases of "
                "torchvision. If you wish to keep the old behavior (which leads to long initialization times"
                " due to scipy/scipy#11299), please set init_weights=True.",
                FutureWarning,
            )
53
            init_weights = True
54
55
        if len(blocks) != 3:
            raise ValueError(f"blocks length should be 3 instead of {len(blocks)}")
56
57
58
59
        conv_block = blocks[0]
        inception_block = blocks[1]
        inception_aux_block = blocks[2]

60
61
62
        self.aux_logits = aux_logits
        self.transform_input = transform_input

63
        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
64
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
65
66
        self.conv2 = conv_block(64, 64, kernel_size=1)
        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
67
68
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

69
70
        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
71
72
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

73
74
75
76
77
        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
78
79
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

80
81
        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)
82

83
        if aux_logits:
84
85
            self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux)
            self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux)
86
        else:
87
88
            self.aux1 = None  # type: ignore[assignment]
            self.aux2 = None  # type: ignore[assignment]
89

90
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
91
        self.dropout = nn.Dropout(p=dropout)
92
93
94
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
95
96
97
98
99
100
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
101

102
    def _transform_input(self, x: Tensor) -> Tensor:
103
104
105
106
107
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
108
        return x
109

110
    def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
111
        # N x 3 x 224 x 224
112
        x = self.conv1(x)
113
        # N x 64 x 112 x 112
114
        x = self.maxpool1(x)
115
        # N x 64 x 56 x 56
116
        x = self.conv2(x)
117
        # N x 64 x 56 x 56
118
        x = self.conv3(x)
119
        # N x 192 x 56 x 56
120
121
        x = self.maxpool2(x)

122
        # N x 192 x 28 x 28
123
        x = self.inception3a(x)
124
        # N x 256 x 28 x 28
125
        x = self.inception3b(x)
126
        # N x 480 x 28 x 28
127
        x = self.maxpool3(x)
128
        # N x 480 x 14 x 14
129
        x = self.inception4a(x)
130
        # N x 512 x 14 x 14
131
        aux1: Optional[Tensor] = None
132
133
134
        if self.aux1 is not None:
            if self.training:
                aux1 = self.aux1(x)
135
136

        x = self.inception4b(x)
137
        # N x 512 x 14 x 14
138
        x = self.inception4c(x)
139
        # N x 512 x 14 x 14
140
        x = self.inception4d(x)
141
        # N x 528 x 14 x 14
142
        aux2: Optional[Tensor] = None
143
144
145
        if self.aux2 is not None:
            if self.training:
                aux2 = self.aux2(x)
146
147

        x = self.inception4e(x)
148
        # N x 832 x 14 x 14
149
        x = self.maxpool4(x)
150
        # N x 832 x 7 x 7
151
        x = self.inception5a(x)
152
        # N x 832 x 7 x 7
153
        x = self.inception5b(x)
154
        # N x 1024 x 7 x 7
155
156

        x = self.avgpool(x)
157
        # N x 1024 x 1 x 1
158
        x = torch.flatten(x, 1)
159
        # N x 1024
160
161
        x = self.dropout(x)
        x = self.fc(x)
162
        # N x 1000 (num_classes)
163
        return x, aux2, aux1
164
165

    @torch.jit.unused
166
    def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
167
        if self.training and self.aux_logits:
taylanbil's avatar
taylanbil committed
168
            return _GoogLeNetOutputs(x, aux2, aux1)
169
        else:
170
            return x  # type: ignore[return-value]
171

172
    def forward(self, x: Tensor) -> GoogLeNetOutputs:
173
174
175
176
177
178
179
180
181
182
        x = self._transform_input(x)
        x, aux1, aux2 = self._forward(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)

183
184

class Inception(nn.Module):
185
186
187
188
189
190
191
192
193
    def __init__(
        self,
        in_channels: int,
        ch1x1: int,
        ch3x3red: int,
        ch3x3: int,
        ch5x5red: int,
        ch5x5: int,
        pool_proj: int,
194
        conv_block: Optional[Callable[..., nn.Module]] = None,
195
    ) -> None:
196
        super().__init__()
197
198
199
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)
200
201

        self.branch2 = nn.Sequential(
202
            conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)
203
204
205
        )

        self.branch3 = nn.Sequential(
206
            conv_block(in_channels, ch5x5red, kernel_size=1),
Philip Meier's avatar
Philip Meier committed
207
208
            # Here, kernel_size=3 instead of kernel_size=5 is a known bug.
            # Please see https://github.com/pytorch/vision/issues/906 for details.
209
            conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1),
210
211
212
213
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
214
            conv_block(in_channels, pool_proj, kernel_size=1),
215
216
        )

217
    def _forward(self, x: Tensor) -> List[Tensor]:
218
219
220
221
222
223
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
224
225
        return outputs

226
    def forward(self, x: Tensor) -> Tensor:
227
        outputs = self._forward(x)
228
229
230
231
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
232
    def __init__(
233
234
235
236
237
        self,
        in_channels: int,
        num_classes: int,
        conv_block: Optional[Callable[..., nn.Module]] = None,
        dropout: float = 0.7,
238
    ) -> None:
239
        super().__init__()
240
241
242
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv = conv_block(in_channels, 128, kernel_size=1)
243
244
245

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
246
        self.dropout = nn.Dropout(p=dropout)
247

248
    def forward(self, x: Tensor) -> Tensor:
249
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
250
        x = F.adaptive_avg_pool2d(x, (4, 4))
251
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
252
        x = self.conv(x)
253
        # N x 128 x 4 x 4
254
        x = torch.flatten(x, 1)
255
        # N x 2048
256
        x = F.relu(self.fc1(x), inplace=True)
Myosaki's avatar
Myosaki committed
257
        # N x 1024
258
        x = self.dropout(x)
259
        # N x 1024
Myosaki's avatar
Myosaki committed
260
261
        x = self.fc2(x)
        # N x 1000 (num_classes)
262
263
264
265
266

        return x


class BasicConv2d(nn.Module):
267
    def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None:
268
        super().__init__()
269
270
271
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

272
    def forward(self, x: Tensor) -> Tensor:
273
274
275
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
276
277


278
279
280
281
282
283
284
285
286
class GoogLeNet_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/googlenet-1378be20.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            "num_params": 6624904,
            "min_size": (15, 15),
            "categories": _IMAGENET_CATEGORIES,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#googlenet",
287
288
289
290
            "metrics": {
                "acc@1": 69.778,
                "acc@5": 89.530,
            },
291
292
293
294
295
296
297
        },
    )
    DEFAULT = IMAGENET1K_V1


@handle_legacy_interface(weights=("pretrained", GoogLeNet_Weights.IMAGENET1K_V1))
def googlenet(*, weights: Optional[GoogLeNet_Weights] = None, progress: bool = True, **kwargs: Any) -> GoogLeNet:
298
    """GoogLeNet (Inception v1) model architecture from
299
    `Going Deeper with Convolutions <http://arxiv.org/abs/1409.4842>`_.
300

301
302
303
    The required minimum input size of the model is 15x15.

    Args:
304
305
306
307
308
309
310
        weights (:class:`~torchvision.models.GoogLeNet_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.GoogLeNet_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
Aditya Oke's avatar
Aditya Oke committed
311
        **kwargs: parameters passed to the ``torchvision.models.GoogLeNet``
312
313
314
315
316
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/googlenet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.GoogLeNet_Weights
        :members:
317
    """
318
319
320
321
    weights = GoogLeNet_Weights.verify(weights)

    original_aux_logits = kwargs.get("aux_logits", False)
    if weights is not None:
322
        if "transform_input" not in kwargs:
323
324
325
326
327
328
329
330
331
            _ovewrite_named_param(kwargs, "transform_input", True)
        _ovewrite_named_param(kwargs, "aux_logits", True)
        _ovewrite_named_param(kwargs, "init_weights", False)
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = GoogLeNet(**kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
332
333
334
335
        if not original_aux_logits:
            model.aux_logits = False
            model.aux1 = None  # type: ignore[assignment]
            model.aux2 = None  # type: ignore[assignment]
336
337
338
339
        else:
            warnings.warn(
                "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
            )
340

341
    return model
342
343
344
345
346
347
348
349
350
351
352
353


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        # GoogLeNet ported from TensorFlow
        "googlenet": GoogLeNet_Weights.IMAGENET1K_V1.url,
    }
)