googlenet.py 11.3 KB
Newer Older
1
2
import warnings
from collections import namedtuple
3
4
from typing import Optional, Tuple, List, Callable, Any

5
6
7
import torch
import torch.nn as nn
import torch.nn.functional as F
8
from torch import Tensor
9

10
from .._internally_replaced_utils import load_state_dict_from_url
11
from ..utils import _log_api_usage_once
12

13
__all__ = ["GoogLeNet", "googlenet", "GoogLeNetOutputs", "_GoogLeNetOutputs"]
14
15
16

model_urls = {
    # GoogLeNet ported from TensorFlow
17
    "googlenet": "https://download.pytorch.org/models/googlenet-1378be20.pth",
18
19
}

20
21
GoogLeNetOutputs = namedtuple("GoogLeNetOutputs", ["logits", "aux_logits2", "aux_logits1"])
GoogLeNetOutputs.__annotations__ = {"logits": Tensor, "aux_logits2": Optional[Tensor], "aux_logits1": Optional[Tensor]}
22
23
24
25

# Script annotations failed with _GoogleNetOutputs = namedtuple ...
# _GoogLeNetOutputs set here for backwards compat
_GoogLeNetOutputs = GoogLeNetOutputs
26

27
28

class GoogLeNet(nn.Module):
29
    __constants__ = ["aux_logits", "transform_input"]
30

31
32
33
34
35
36
    def __init__(
        self,
        num_classes: int = 1000,
        aux_logits: bool = True,
        transform_input: bool = False,
        init_weights: Optional[bool] = None,
37
        blocks: Optional[List[Callable[..., nn.Module]]] = None,
38
39
        dropout: float = 0.2,
        dropout_aux: float = 0.7,
40
    ) -> None:
41
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
42
        _log_api_usage_once(self)
43
44
        if blocks is None:
            blocks = [BasicConv2d, Inception, InceptionAux]
45
        if init_weights is None:
46
47
48
49
50
51
            warnings.warn(
                "The default weight initialization of GoogleNet will be changed in future releases of "
                "torchvision. If you wish to keep the old behavior (which leads to long initialization times"
                " due to scipy/scipy#11299), please set init_weights=True.",
                FutureWarning,
            )
52
            init_weights = True
53
54
        if len(blocks) != 3:
            raise ValueError(f"blocks length should be 3 instead of {len(blocks)}")
55
56
57
58
        conv_block = blocks[0]
        inception_block = blocks[1]
        inception_aux_block = blocks[2]

59
60
61
        self.aux_logits = aux_logits
        self.transform_input = transform_input

62
        self.conv1 = conv_block(3, 64, kernel_size=7, stride=2, padding=3)
63
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
64
65
        self.conv2 = conv_block(64, 64, kernel_size=1)
        self.conv3 = conv_block(64, 192, kernel_size=3, padding=1)
66
67
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

68
69
        self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)
70
71
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

72
73
74
75
76
        self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)
77
78
        self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)

79
80
        self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = inception_block(832, 384, 192, 384, 48, 128, 128)
81

82
        if aux_logits:
83
84
            self.aux1 = inception_aux_block(512, num_classes, dropout=dropout_aux)
            self.aux2 = inception_aux_block(528, num_classes, dropout=dropout_aux)
85
        else:
86
87
            self.aux1 = None  # type: ignore[assignment]
            self.aux2 = None  # type: ignore[assignment]
88

89
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
90
        self.dropout = nn.Dropout(p=dropout)
91
92
93
        self.fc = nn.Linear(1024, num_classes)

        if init_weights:
94
95
96
97
98
99
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    torch.nn.init.trunc_normal_(m.weight, mean=0.0, std=0.01, a=-2, b=2)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
100

101
    def _transform_input(self, x: Tensor) -> Tensor:
102
103
104
105
106
        if self.transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
107
        return x
108

109
    def _forward(self, x: Tensor) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
110
        # N x 3 x 224 x 224
111
        x = self.conv1(x)
112
        # N x 64 x 112 x 112
113
        x = self.maxpool1(x)
114
        # N x 64 x 56 x 56
115
        x = self.conv2(x)
116
        # N x 64 x 56 x 56
117
        x = self.conv3(x)
118
        # N x 192 x 56 x 56
119
120
        x = self.maxpool2(x)

121
        # N x 192 x 28 x 28
122
        x = self.inception3a(x)
123
        # N x 256 x 28 x 28
124
        x = self.inception3b(x)
125
        # N x 480 x 28 x 28
126
        x = self.maxpool3(x)
127
        # N x 480 x 14 x 14
128
        x = self.inception4a(x)
129
        # N x 512 x 14 x 14
130
        aux1: Optional[Tensor] = None
131
132
133
        if self.aux1 is not None:
            if self.training:
                aux1 = self.aux1(x)
134
135

        x = self.inception4b(x)
136
        # N x 512 x 14 x 14
137
        x = self.inception4c(x)
138
        # N x 512 x 14 x 14
139
        x = self.inception4d(x)
140
        # N x 528 x 14 x 14
141
        aux2: Optional[Tensor] = None
142
143
144
        if self.aux2 is not None:
            if self.training:
                aux2 = self.aux2(x)
145
146

        x = self.inception4e(x)
147
        # N x 832 x 14 x 14
148
        x = self.maxpool4(x)
149
        # N x 832 x 7 x 7
150
        x = self.inception5a(x)
151
        # N x 832 x 7 x 7
152
        x = self.inception5b(x)
153
        # N x 1024 x 7 x 7
154
155

        x = self.avgpool(x)
156
        # N x 1024 x 1 x 1
157
        x = torch.flatten(x, 1)
158
        # N x 1024
159
160
        x = self.dropout(x)
        x = self.fc(x)
161
        # N x 1000 (num_classes)
162
        return x, aux2, aux1
163
164

    @torch.jit.unused
165
    def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
166
        if self.training and self.aux_logits:
taylanbil's avatar
taylanbil committed
167
            return _GoogLeNetOutputs(x, aux2, aux1)
168
        else:
169
            return x  # type: ignore[return-value]
170

171
    def forward(self, x: Tensor) -> GoogLeNetOutputs:
172
173
174
175
176
177
178
179
180
181
        x = self._transform_input(x)
        x, aux1, aux2 = self._forward(x)
        aux_defined = self.training and self.aux_logits
        if torch.jit.is_scripting():
            if not aux_defined:
                warnings.warn("Scripted GoogleNet always returns GoogleNetOutputs Tuple")
            return GoogLeNetOutputs(x, aux2, aux1)
        else:
            return self.eager_outputs(x, aux2, aux1)

182
183

class Inception(nn.Module):
184
185
186
187
188
189
190
191
192
    def __init__(
        self,
        in_channels: int,
        ch1x1: int,
        ch3x3red: int,
        ch3x3: int,
        ch5x5red: int,
        ch5x5: int,
        pool_proj: int,
193
        conv_block: Optional[Callable[..., nn.Module]] = None,
194
    ) -> None:
195
        super().__init__()
196
197
198
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1 = conv_block(in_channels, ch1x1, kernel_size=1)
199
200

        self.branch2 = nn.Sequential(
201
            conv_block(in_channels, ch3x3red, kernel_size=1), conv_block(ch3x3red, ch3x3, kernel_size=3, padding=1)
202
203
204
        )

        self.branch3 = nn.Sequential(
205
            conv_block(in_channels, ch5x5red, kernel_size=1),
Philip Meier's avatar
Philip Meier committed
206
207
            # Here, kernel_size=3 instead of kernel_size=5 is a known bug.
            # Please see https://github.com/pytorch/vision/issues/906 for details.
208
            conv_block(ch5x5red, ch5x5, kernel_size=3, padding=1),
209
210
211
212
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
213
            conv_block(in_channels, pool_proj, kernel_size=1),
214
215
        )

216
    def _forward(self, x: Tensor) -> List[Tensor]:
217
218
219
220
221
222
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
223
224
        return outputs

225
    def forward(self, x: Tensor) -> Tensor:
226
        outputs = self._forward(x)
227
228
229
230
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
231
    def __init__(
232
233
234
235
236
        self,
        in_channels: int,
        num_classes: int,
        conv_block: Optional[Callable[..., nn.Module]] = None,
        dropout: float = 0.7,
237
    ) -> None:
238
        super().__init__()
239
240
241
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv = conv_block(in_channels, 128, kernel_size=1)
242
243
244

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
245
        self.dropout = nn.Dropout(p=dropout)
246

247
    def forward(self, x: Tensor) -> Tensor:
248
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
249
        x = F.adaptive_avg_pool2d(x, (4, 4))
250
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
251
        x = self.conv(x)
252
        # N x 128 x 4 x 4
253
        x = torch.flatten(x, 1)
254
        # N x 2048
255
        x = F.relu(self.fc1(x), inplace=True)
Myosaki's avatar
Myosaki committed
256
        # N x 1024
257
        x = self.dropout(x)
258
        # N x 1024
Myosaki's avatar
Myosaki committed
259
260
        x = self.fc2(x)
        # N x 1000 (num_classes)
261
262
263
264
265

        return x


class BasicConv2d(nn.Module):
266
    def __init__(self, in_channels: int, out_channels: int, **kwargs: Any) -> None:
267
        super().__init__()
268
269
270
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

271
    def forward(self, x: Tensor) -> Tensor:
272
273
274
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)
275
276
277
278
279
280
281
282
283
284
285
286
287


def googlenet(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> GoogLeNet:
    r"""GoogLeNet (Inception v1) model architecture from
    `"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
    The required minimum input size of the model is 15x15.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        aux_logits (bool): If True, adds two auxiliary branches that can improve training.
            Default: *False* when pretrained is True otherwise *True*
        transform_input (bool): If True, preprocesses the input according to the method with which it
288
            was trained on ImageNet. Default: True if ``pretrained=True``, else False.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    """
    if pretrained:
        if "transform_input" not in kwargs:
            kwargs["transform_input"] = True
        if "aux_logits" not in kwargs:
            kwargs["aux_logits"] = False
        if kwargs["aux_logits"]:
            warnings.warn(
                "auxiliary heads in the pretrained googlenet model are NOT pretrained, so make sure to train them"
            )
        original_aux_logits = kwargs["aux_logits"]
        kwargs["aux_logits"] = True
        kwargs["init_weights"] = False
        model = GoogLeNet(**kwargs)
        state_dict = load_state_dict_from_url(model_urls["googlenet"], progress=progress)
        model.load_state_dict(state_dict)
        if not original_aux_logits:
            model.aux_logits = False
            model.aux1 = None  # type: ignore[assignment]
            model.aux2 = None  # type: ignore[assignment]
        return model

    return GoogLeNet(**kwargs)