transforms.py 7.98 KB
Newer Older
1
from __future__ import division
soumith's avatar
soumith committed
2
3
4
import torch
import math
import random
5
from PIL import Image, ImageOps
6
import numpy as np
7
import numbers
Soumith Chintala's avatar
Soumith Chintala committed
8
import types
soumith's avatar
soumith committed
9

10

soumith's avatar
soumith committed
11
class Compose(object):
Adam Paszke's avatar
Adam Paszke committed
12
13
14
15
16
17
18
19
20
21
    """Composes several transforms together.

    Args:
        transforms (List[Transform]): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
22
    """
23

soumith's avatar
soumith committed
24
25
26
27
28
29
30
31
32
33
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img


class ToTensor(object):
34
    """Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
Adam Paszke's avatar
Adam Paszke committed
35
36
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """
37

soumith's avatar
soumith committed
38
    def __call__(self, pic):
39
40
        if isinstance(pic, np.ndarray):
            # handle numpy array
41
            img = torch.from_numpy(pic.transpose((2, 0, 1)))
42
43
44
45
            # backard compability
            return img.float().div(255)
        # handle PIL Image
        if pic.mode == 'I':
46
            img = torch.from_numpy(np.array(pic, np.int32, copy=False))
47
        elif pic.mode == 'I;16':
48
            img = torch.from_numpy(np.array(pic, np.int16, copy=False))
49
50
        else:
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
        if pic.mode == 'YCbCr':
            nchannel = 3
        elif pic.mode == 'I;16':
            nchannel = 1
        else:
            nchannel = len(pic.mode)
        img = img.view(pic.size[1], pic.size[0], nchannel)
        # put it from HWC to CHW format
        # yikes, this transpose takes 80% of the loading time/CPU
        img = img.transpose(0, 1).transpose(0, 2).contiguous()
        if isinstance(img, torch.ByteTensor):
            return img.float().div(255)
        else:
            return img
66

Adam Paszke's avatar
Adam Paszke committed
67

68
class ToPILImage(object):
69
70
    """Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL.Image while preserving value range.
71
    """
72

73
    def __call__(self, pic):
74
75
        npimg = pic
        mode = None
76
77
78
79
80
        if isinstance(pic, torch.FloatTensor):
            pic = pic.mul(255).byte()
        if torch.is_tensor(pic):
            npimg = np.transpose(pic.numpy(), (1, 2, 0))
        assert isinstance(npimg, np.ndarray), 'pic should be Tensor or ndarray'
81
82
        if npimg.shape[2] == 1:
            npimg = npimg[:, :, 0]
83
84
85

            if npimg.dtype == np.uint8:
                mode = 'L'
86
            if npimg.dtype == np.int16:
87
                mode = 'I;16'
88
89
            if npimg.dtype == np.int32:
                mode = 'I'
90
91
92
93
94
95
            elif npimg.dtype == np.float32:
                mode = 'F'
        else:
            if npimg.dtype == np.uint8:
                mode = 'RGB'
        assert mode is not None, '{} is not supported'.format(npimg.dtype)
96
97
        return Image.fromarray(npimg, mode=mode)

soumith's avatar
soumith committed
98
99

class Normalize(object):
Adam Paszke's avatar
Adam Paszke committed
100
    """Given mean: (R, G, B) and std: (R, G, B),
101
102
103
    will normalize each channel of the torch.*Tensor, i.e.
    channel = (channel - mean) / std
    """
104

soumith's avatar
soumith committed
105
106
107
108
109
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
110
        # TODO: make efficient
soumith's avatar
soumith committed
111
112
113
114
115
116
        for t, m, s in zip(tensor, self.mean, self.std):
            t.sub_(m).div_(s)
        return tensor


class Scale(object):
Adam Paszke's avatar
Adam Paszke committed
117
    """Rescales the input PIL.Image to the given 'size'.
118
119
120
121
122
123
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
124

soumith's avatar
soumith committed
125
126
127
128
129
130
131
132
133
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        w, h = img.size
        if (w <= h and w == self.size) or (h <= w and h == self.size):
            return img
        if w < h:
134
135
136
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
137
        else:
138
139
140
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
141
142
143


class CenterCrop(object):
144
145
146
147
    """Crops the given PIL.Image at the center to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
148

soumith's avatar
soumith committed
149
    def __init__(self, size):
150
151
152
153
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
154
155
156

    def __call__(self, img):
        w, h = img.size
157
        th, tw = self.size
158
159
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
160
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
161
162


163
164
class Pad(object):
    """Pads the given PIL.Image on all sides with the given "pad" value"""
165

166
167
    def __init__(self, padding, fill=0):
        assert isinstance(padding, numbers.Number)
168
        assert isinstance(fill, numbers.Number) or isinstance(fill, str) or isinstance(fill, tuple)
169
170
171
172
173
174
        self.padding = padding
        self.fill = fill

    def __call__(self, img):
        return ImageOps.expand(img, border=self.padding, fill=self.fill)

175

Soumith Chintala's avatar
Soumith Chintala committed
176
class Lambda(object):
Adam Paszke's avatar
Adam Paszke committed
177
    """Applies a lambda as a transform."""
178

Soumith Chintala's avatar
Soumith Chintala committed
179
    def __init__(self, lambd):
180
        assert isinstance(lambd, types.LambdaType)
Soumith Chintala's avatar
Soumith Chintala committed
181
182
183
184
185
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

186

soumith's avatar
soumith committed
187
class RandomCrop(object):
188
189
190
191
    """Crops the given PIL.Image at a random location to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
192

soumith's avatar
soumith committed
193
    def __init__(self, size, padding=0):
194
195
196
197
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
198
199
200
201
        self.padding = padding

    def __call__(self, img):
        if self.padding > 0:
202
            img = ImageOps.expand(img, border=self.padding, fill=0)
soumith's avatar
soumith committed
203
204

        w, h = img.size
205
206
        th, tw = self.size
        if w == tw and h == th:
soumith's avatar
soumith committed
207
208
            return img

209
210
211
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
212
213
214


class RandomHorizontalFlip(object):
215
216
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5
    """
217

soumith's avatar
soumith committed
218
219
220
221
222
223
224
    def __call__(self, img):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_LEFT_RIGHT)
        return img


class RandomSizedCrop(object):
225
226
227
228
229
230
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
231

soumith's avatar
soumith committed
232
233
234
235
236
237
238
239
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.08, 1.0) * area
240
            aspect_ratio = random.uniform(3. / 4, 4. / 3)
soumith's avatar
soumith committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))