transforms.py 7.11 KB
Newer Older
1
from __future__ import division
soumith's avatar
soumith committed
2
3
4
import torch
import math
import random
5
from PIL import Image, ImageOps
6
import numpy as np
7
import numbers
Soumith Chintala's avatar
Soumith Chintala committed
8
import types
soumith's avatar
soumith committed
9

10

soumith's avatar
soumith committed
11
class Compose(object):
Adam Paszke's avatar
Adam Paszke committed
12
13
14
15
16
17
18
19
20
21
    """Composes several transforms together.

    Args:
        transforms (List[Transform]): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
22
    """
23

soumith's avatar
soumith committed
24
25
26
27
28
29
30
31
32
33
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img


class ToTensor(object):
34
    """Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
Adam Paszke's avatar
Adam Paszke committed
35
36
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """
37

soumith's avatar
soumith committed
38
    def __call__(self, pic):
39
40
41
42
43
44
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic)
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
45
46
47
48
49
50
            # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
            if pic.mode == 'YCbCr':
                nchannel = 3
            else:
                nchannel = len(pic.mode)
            img = img.view(pic.size[1], pic.size[0], nchannel)
Soumith Chintala's avatar
Soumith Chintala committed
51
            # put it from HWC to CHW format
52
            # yikes, this transpose takes 80% of the loading time/CPU
Soumith Chintala's avatar
Soumith Chintala committed
53
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
54
55
        return img.float().div(255)

Adam Paszke's avatar
Adam Paszke committed
56

57
class ToPILImage(object):
Adam Paszke's avatar
Adam Paszke committed
58
    """Converts a torch.*Tensor of range [0, 1] and shape C x H x W
59
60
61
    or numpy ndarray of dtype=uint8, range[0, 255] and shape H x W x C
    to a PIL.Image of range [0, 255]
    """
62

63
    def __call__(self, pic):
64
65
66
        npimg = pic
        mode = None
        if not isinstance(npimg, np.ndarray):
67
            npimg = pic.mul(255).byte().numpy()
68
            npimg = np.transpose(npimg, (1, 2, 0))
69
70
71
72
73
74
75

        if npimg.shape[2] == 1:
            npimg = npimg[:, :, 0]
            mode = "L"

        return Image.fromarray(npimg, mode=mode)

soumith's avatar
soumith committed
76
77

class Normalize(object):
Adam Paszke's avatar
Adam Paszke committed
78
    """Given mean: (R, G, B) and std: (R, G, B),
79
80
81
    will normalize each channel of the torch.*Tensor, i.e.
    channel = (channel - mean) / std
    """
82

soumith's avatar
soumith committed
83
84
85
86
87
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
88
        # TODO: make efficient
soumith's avatar
soumith committed
89
90
91
92
93
94
        for t, m, s in zip(tensor, self.mean, self.std):
            t.sub_(m).div_(s)
        return tensor


class Scale(object):
Adam Paszke's avatar
Adam Paszke committed
95
    """Rescales the input PIL.Image to the given 'size'.
96
97
98
99
100
101
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
102

soumith's avatar
soumith committed
103
104
105
106
107
108
109
110
111
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        w, h = img.size
        if (w <= h and w == self.size) or (h <= w and h == self.size):
            return img
        if w < h:
112
113
114
            ow = self.size
            oh = int(self.size * h / w)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
115
        else:
116
117
118
            oh = self.size
            ow = int(self.size * w / h)
            return img.resize((ow, oh), self.interpolation)
soumith's avatar
soumith committed
119
120
121


class CenterCrop(object):
122
123
124
125
    """Crops the given PIL.Image at the center to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
126

soumith's avatar
soumith committed
127
    def __init__(self, size):
128
129
130
131
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
132
133
134

    def __call__(self, img):
        w, h = img.size
135
        th, tw = self.size
136
137
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
138
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
139
140


141
142
class Pad(object):
    """Pads the given PIL.Image on all sides with the given "pad" value"""
143

144
145
    def __init__(self, padding, fill=0):
        assert isinstance(padding, numbers.Number)
146
        assert isinstance(fill, numbers.Number) or isinstance(fill, str) or isinstance(fill, tuple)
147
148
149
150
151
152
        self.padding = padding
        self.fill = fill

    def __call__(self, img):
        return ImageOps.expand(img, border=self.padding, fill=self.fill)

153

Soumith Chintala's avatar
Soumith Chintala committed
154
class Lambda(object):
Adam Paszke's avatar
Adam Paszke committed
155
    """Applies a lambda as a transform."""
156

Soumith Chintala's avatar
Soumith Chintala committed
157
158
159
160
161
162
163
    def __init__(self, lambd):
        assert type(lambd) is types.LambdaType
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

164

soumith's avatar
soumith committed
165
class RandomCrop(object):
166
167
168
169
    """Crops the given PIL.Image at a random location to have a region of
    the given size. size can be a tuple (target_height, target_width)
    or an integer, in which case the target will be of a square shape (size, size)
    """
170

soumith's avatar
soumith committed
171
    def __init__(self, size, padding=0):
172
173
174
175
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
soumith's avatar
soumith committed
176
177
178
179
        self.padding = padding

    def __call__(self, img):
        if self.padding > 0:
180
            img = ImageOps.expand(img, border=self.padding, fill=0)
soumith's avatar
soumith committed
181
182

        w, h = img.size
183
184
        th, tw = self.size
        if w == tw and h == th:
soumith's avatar
soumith committed
185
186
            return img

187
188
189
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        return img.crop((x1, y1, x1 + tw, y1 + th))
soumith's avatar
soumith committed
190
191
192


class RandomHorizontalFlip(object):
193
194
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5
    """
195

soumith's avatar
soumith committed
196
197
198
199
200
201
202
    def __call__(self, img):
        if random.random() < 0.5:
            return img.transpose(Image.FLIP_LEFT_RIGHT)
        return img


class RandomSizedCrop(object):
203
204
205
206
207
208
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
209

soumith's avatar
soumith committed
210
211
212
213
214
215
216
217
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        for attempt in range(10):
            area = img.size[0] * img.size[1]
            target_area = random.uniform(0.08, 1.0) * area
218
            aspect_ratio = random.uniform(3. / 4, 4. / 3)
soumith's avatar
soumith committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                x1 = random.randint(0, img.size[0] - w)
                y1 = random.randint(0, img.size[1] - h)

                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))

                return img.resize((self.size, self.size), self.interpolation)

        # Fallback
        scale = Scale(self.size, interpolation=self.interpolation)
        crop = CenterCrop(self.size)
        return crop(scale(img))