test_transforms_v2.py 42.5 KB
Newer Older
1
2
import itertools
import pathlib
3
import pickle
4
5
6
7
8
9
10
11
12
13
import random
import warnings

import numpy as np

import PIL.Image
import pytest
import torch
import torchvision.transforms.v2 as transforms

14
from common_utils import assert_equal, cpu_and_cuda
15
from torch.utils._pytree import tree_flatten, tree_unflatten
16
from torchvision import tv_tensors
17
18
19
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.v2 import functional as F
Nicolas Hug's avatar
Nicolas Hug committed
20
from torchvision.transforms.v2._utils import check_type, is_pure_tensor, query_chw
21
from transforms_v2_legacy_utils import (
22
23
24
25
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
26
    make_multiple_bounding_boxes,
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    make_segmentation_mask,
    make_video,
    make_videos,
)


def make_vanilla_tensor_images(*args, **kwargs):
    for image in make_images(*args, **kwargs):
        if image.ndim > 3:
            continue
        yield image.data


def make_pil_images(*args, **kwargs):
    for image in make_vanilla_tensor_images(*args, **kwargs):
        yield to_pil_image(image)


def make_vanilla_tensor_bounding_boxes(*args, **kwargs):
46
    for bounding_boxes in make_multiple_bounding_boxes(*args, **kwargs):
47
        yield bounding_boxes.data
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


def parametrize(transforms_with_inputs):
    return pytest.mark.parametrize(
        ("transform", "input"),
        [
            pytest.param(
                transform,
                input,
                id=f"{type(transform).__name__}-{type(input).__module__}.{type(input).__name__}-{idx}",
            )
            for transform, inputs in transforms_with_inputs
            for idx, input in enumerate(inputs)
        ],
    )


def auto_augment_adapter(transform, input, device):
    adapted_input = {}
    image_or_video_found = False
    for key, value in input.items():
69
        if isinstance(value, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
70
71
            # AA transforms don't support bounding boxes or masks
            continue
72
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor, PIL.Image.Image)):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
            if image_or_video_found:
                # AA transforms only support a single image or video
                continue
            image_or_video_found = True
        adapted_input[key] = value
    return adapted_input


def linear_transformation_adapter(transform, input, device):
    flat_inputs = list(input.values())
    c, h, w = query_chw(
        [
            item
            for item, needs_transform in zip(flat_inputs, transforms.Transform()._needs_transform_list(flat_inputs))
            if needs_transform
        ]
    )
    num_elements = c * h * w
    transform.transformation_matrix = torch.randn((num_elements, num_elements), device=device)
    transform.mean_vector = torch.randn((num_elements,), device=device)
    return {key: value for key, value in input.items() if not isinstance(value, PIL.Image.Image)}


def normalize_adapter(transform, input, device):
    adapted_input = {}
    for key, value in input.items():
        if isinstance(value, PIL.Image.Image):
            # normalize doesn't support PIL images
            continue
102
        elif check_type(value, (tv_tensors.Image, tv_tensors.Video, is_pure_tensor)):
103
            # normalize doesn't support integer images
104
            value = F.to_dtype(value, torch.float32, scale=True)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        adapted_input[key] = value
    return adapted_input


class TestSmoke:
    @pytest.mark.parametrize(
        ("transform", "adapter"),
        [
            (transforms.RandomErasing(p=1.0), None),
            (transforms.AugMix(), auto_augment_adapter),
            (transforms.AutoAugment(), auto_augment_adapter),
            (transforms.RandAugment(), auto_augment_adapter),
            (transforms.TrivialAugmentWide(), auto_augment_adapter),
            (transforms.ColorJitter(brightness=0.1, contrast=0.2, saturation=0.3, hue=0.15), None),
            (transforms.Grayscale(), None),
            (transforms.RandomAdjustSharpness(sharpness_factor=0.5, p=1.0), None),
            (transforms.RandomAutocontrast(p=1.0), None),
            (transforms.RandomEqualize(p=1.0), None),
            (transforms.RandomGrayscale(p=1.0), None),
            (transforms.RandomInvert(p=1.0), None),
125
            (transforms.RandomChannelPermutation(), None),
126
127
128
129
130
131
132
133
134
135
            (transforms.RandomPhotometricDistort(p=1.0), None),
            (transforms.RandomPosterize(bits=4, p=1.0), None),
            (transforms.RandomSolarize(threshold=0.5, p=1.0), None),
            (transforms.CenterCrop([16, 16]), None),
            (transforms.ElasticTransform(sigma=1.0), None),
            (transforms.Pad(4), None),
            (transforms.RandomAffine(degrees=30.0), None),
            (transforms.RandomCrop([16, 16], pad_if_needed=True), None),
            (transforms.RandomHorizontalFlip(p=1.0), None),
            (transforms.RandomPerspective(p=1.0), None),
136
137
            (transforms.RandomResize(min_size=10, max_size=20, antialias=True), None),
            (transforms.RandomResizedCrop([16, 16], antialias=True), None),
138
            (transforms.RandomRotation(degrees=30), None),
139
            (transforms.RandomShortestSize(min_size=10, antialias=True), None),
140
141
142
            (transforms.RandomVerticalFlip(p=1.0), None),
            (transforms.RandomZoomOut(p=1.0), None),
            (transforms.Resize([16, 16], antialias=True), None),
143
            (transforms.ScaleJitter((16, 16), scale_range=(0.8, 1.2), antialias=True), None),
144
            (transforms.ClampBoundingBoxes(), None),
145
            (transforms.ConvertBoundingBoxFormat(tv_tensors.BoundingBoxFormat.CXCYWH), None),
146
            (transforms.ConvertImageDtype(), None),
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            (transforms.GaussianBlur(kernel_size=3), None),
            (
                transforms.LinearTransformation(
                    # These are just dummy values that will be filled by the adapter. We can't define them upfront,
                    # because for we neither know the spatial size nor the device at this point
                    transformation_matrix=torch.empty((1, 1)),
                    mean_vector=torch.empty((1,)),
                ),
                linear_transformation_adapter,
            ),
            (transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), normalize_adapter),
            (transforms.ToDtype(torch.float64), None),
            (transforms.UniformTemporalSubsample(num_samples=2), None),
        ],
        ids=lambda transform: type(transform).__name__,
    )
    @pytest.mark.parametrize("container_type", [dict, list, tuple])
    @pytest.mark.parametrize(
        "image_or_video",
        [
            make_image(),
            make_video(),
            next(make_pil_images(color_spaces=["RGB"])),
            next(make_vanilla_tensor_images()),
        ],
    )
173
    @pytest.mark.parametrize("de_serialize", [lambda t: t, lambda t: pickle.loads(pickle.dumps(t))])
174
    @pytest.mark.parametrize("device", cpu_and_cuda())
175
176
177
    def test_common(self, transform, adapter, container_type, image_or_video, de_serialize, device):
        transform = de_serialize(transform)

Philip Meier's avatar
Philip Meier committed
178
        canvas_size = F.get_size(image_or_video)
179
180
        input = dict(
            image_or_video=image_or_video,
181
182
            image_tv_tensor=make_image(size=canvas_size),
            video_tv_tensor=make_video(size=canvas_size),
Philip Meier's avatar
Philip Meier committed
183
            image_pil=next(make_pil_images(sizes=[canvas_size], color_spaces=["RGB"])),
184
            bounding_boxes_xyxy=make_bounding_boxes(
185
                format=tv_tensors.BoundingBoxFormat.XYXY, canvas_size=canvas_size, batch_dims=(3,)
186
            ),
187
            bounding_boxes_xywh=make_bounding_boxes(
188
                format=tv_tensors.BoundingBoxFormat.XYWH, canvas_size=canvas_size, batch_dims=(4,)
189
            ),
190
            bounding_boxes_cxcywh=make_bounding_boxes(
191
                format=tv_tensors.BoundingBoxFormat.CXCYWH, canvas_size=canvas_size, batch_dims=(5,)
192
            ),
193
            bounding_boxes_degenerate_xyxy=tv_tensors.BoundingBoxes(
194
195
196
197
198
199
200
201
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [2, 0, 1, 1],  # x1 > x2, y1 < y2
                    [0, 2, 1, 1],  # x1 < x2, y1 > y2
                    [2, 2, 1, 1],  # x1 > x2, y1 > y2
                ],
202
                format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
203
                canvas_size=canvas_size,
204
            ),
205
            bounding_boxes_degenerate_xywh=tv_tensors.BoundingBoxes(
206
207
208
209
210
211
212
213
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
214
                format=tv_tensors.BoundingBoxFormat.XYWH,
Philip Meier's avatar
Philip Meier committed
215
                canvas_size=canvas_size,
216
            ),
217
            bounding_boxes_degenerate_cxcywh=tv_tensors.BoundingBoxes(
218
219
220
221
222
223
224
225
                [
                    [0, 0, 0, 0],  # no height or width
                    [0, 0, 0, 1],  # no height
                    [0, 0, 1, 0],  # no width
                    [0, 0, 1, -1],  # negative height
                    [0, 0, -1, 1],  # negative width
                    [0, 0, -1, -1],  # negative height and width
                ],
226
                format=tv_tensors.BoundingBoxFormat.CXCYWH,
Philip Meier's avatar
Philip Meier committed
227
                canvas_size=canvas_size,
228
            ),
Philip Meier's avatar
Philip Meier committed
229
230
            detection_mask=make_detection_mask(size=canvas_size),
            segmentation_mask=make_segmentation_mask(size=canvas_size),
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            int=0,
            float=0.0,
            bool=True,
            none=None,
            str="str",
            path=pathlib.Path.cwd(),
            object=object(),
            tensor=torch.empty(5),
            array=np.empty(5),
        )
        if adapter is not None:
            input = adapter(transform, input, device)

        if container_type in {tuple, list}:
            input = container_type(input.values())

        input_flat, input_spec = tree_flatten(input)
        input_flat = [item.to(device) if isinstance(item, torch.Tensor) else item for item in input_flat]
        input = tree_unflatten(input_flat, input_spec)

        torch.manual_seed(0)
        output = transform(input)
        output_flat, output_spec = tree_flatten(output)

        assert output_spec == input_spec

        for output_item, input_item, should_be_transformed in zip(
            output_flat, input_flat, transforms.Transform()._needs_transform_list(input_flat)
        ):
            if should_be_transformed:
                assert type(output_item) is type(input_item)
            else:
                assert output_item is input_item

265
            if isinstance(input_item, tv_tensors.BoundingBoxes) and not isinstance(
266
267
268
269
270
271
272
                transform, transforms.ConvertBoundingBoxFormat
            ):
                assert output_item.format == input_item.format

        # Enforce that the transform does not turn a degenerate box marked by RandomIoUCrop (or any other future
        # transform that does this), back into a valid one.
        # TODO: we should test that against all degenerate boxes above
273
        for format in list(tv_tensors.BoundingBoxFormat):
274
            sample = dict(
275
                boxes=tv_tensors.BoundingBoxes([[0, 0, 0, 0]], format=format, canvas_size=(224, 244)),
276
277
                labels=torch.tensor([3]),
            )
278
            assert transforms.SanitizeBoundingBoxes()(sample)["boxes"].shape == (0, 4)
279
280
281
282
283
284
285
286
287
288
289
290
291

    @parametrize(
        [
            (
                transform,
                itertools.chain.from_iterable(
                    fn(
                        color_spaces=[
                            "GRAY",
                            "RGB",
                        ],
                        dtypes=[torch.uint8],
                        extra_dims=[(), (4,)],
292
                        **(dict(num_frames=[3]) if fn is make_videos else dict()),
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                    )
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_pil_images,
                        make_videos,
                    ]
                ),
            )
            for transform in (
                transforms.RandAugment(),
                transforms.TrivialAugmentWide(),
                transforms.AutoAugment(),
                transforms.AugMix(),
            )
        ]
    )
    def test_auto_augment(self, transform, input):
        transform(input)

    @parametrize(
        [
            (
                transforms.Normalize(mean=[0.0, 0.0, 0.0], std=[1.0, 1.0, 1.0]),
                itertools.chain.from_iterable(
                    fn(color_spaces=["RGB"], dtypes=[torch.float32])
                    for fn in [
                        make_images,
                        make_vanilla_tensor_images,
                        make_videos,
                    ]
                ),
            ),
        ]
    )
    def test_normalize(self, transform, input):
        transform(input)


@pytest.mark.parametrize(
    "flat_inputs",
    itertools.permutations(
        [
            next(make_vanilla_tensor_images()),
            next(make_vanilla_tensor_images()),
            next(make_pil_images()),
            make_image(),
            next(make_videos()),
        ],
        3,
    ),
)
345
346
def test_pure_tensor_heuristic(flat_inputs):
    def split_on_pure_tensor(to_split):
347
        # This takes a sequence that is structurally aligned with `flat_inputs` and splits its items into three parts:
348
349
        # 1. The first pure tensor. If none is present, this will be `None`
        # 2. A list of the remaining pure tensors
350
        # 3. A list of all other items
351
        pure_tensors = []
352
353
354
355
        others = []
        # Splitting always happens on the original `flat_inputs` to avoid any erroneous type changes by the transform to
        # affect the splitting.
        for item, inpt in zip(to_split, flat_inputs):
356
357
            (pure_tensors if is_pure_tensor(inpt) else others).append(item)
        return pure_tensors[0] if pure_tensors else None, pure_tensors[1:], others
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

    class CopyCloneTransform(transforms.Transform):
        def _transform(self, inpt, params):
            return inpt.clone() if isinstance(inpt, torch.Tensor) else inpt.copy()

        @staticmethod
        def was_applied(output, inpt):
            identity = output is inpt
            if identity:
                return False

            # Make sure nothing fishy is going on
            assert_equal(output, inpt)
            return True

373
    first_pure_tensor_input, other_pure_tensor_inputs, other_inputs = split_on_pure_tensor(flat_inputs)
374
375
376
377

    transform = CopyCloneTransform()
    transformed_sample = transform(flat_inputs)

378
    first_pure_tensor_output, other_pure_tensor_outputs, other_outputs = split_on_pure_tensor(transformed_sample)
379

380
    if first_pure_tensor_input is not None:
381
        if other_inputs:
382
            assert not transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
383
        else:
384
            assert transform.was_applied(first_pure_tensor_output, first_pure_tensor_input)
385

386
    for output, inpt in zip(other_pure_tensor_outputs, other_pure_tensor_inputs):
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        assert not transform.was_applied(output, inpt)

    for input, output in zip(other_inputs, other_outputs):
        assert transform.was_applied(output, input)


class TestRandomZoomOut:
    def test_assertions(self):
        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.RandomZoomOut(fill="abc")

        with pytest.raises(TypeError, match="should be a sequence of length"):
            transforms.RandomZoomOut(0, side_range=0)

        with pytest.raises(ValueError, match="Invalid canvas side range"):
            transforms.RandomZoomOut(0, side_range=[4.0, 1.0])

    @pytest.mark.parametrize("fill", [0, [1, 2, 3], (2, 3, 4)])
    @pytest.mark.parametrize("side_range", [(1.0, 4.0), [2.0, 5.0]])
Philip Meier's avatar
Philip Meier committed
406
    def test__get_params(self, fill, side_range):
407
408
        transform = transforms.RandomZoomOut(fill=fill, side_range=side_range)

Philip Meier's avatar
Philip Meier committed
409
410
        h, w = size = (24, 32)
        image = make_image(size)
411
412
413
414
415
416
417
418
419
420
421
422
423

        params = transform._get_params([image])

        assert len(params["padding"]) == 4
        assert 0 <= params["padding"][0] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][1] <= (side_range[1] - 1) * h
        assert 0 <= params["padding"][2] <= (side_range[1] - 1) * w
        assert 0 <= params["padding"][3] <= (side_range[1] - 1) * h


class TestElasticTransform:
    def test_assertions(self):

424
        with pytest.raises(TypeError, match="alpha should be a number or a sequence of numbers"):
425
426
            transforms.ElasticTransform({})

427
        with pytest.raises(ValueError, match="alpha is a sequence its length should be 1 or 2"):
428
429
            transforms.ElasticTransform([1.0, 2.0, 3.0])

430
        with pytest.raises(TypeError, match="sigma should be a number or a sequence of numbers"):
431
432
            transforms.ElasticTransform(1.0, {})

433
        with pytest.raises(ValueError, match="sigma is a sequence its length should be 1 or 2"):
434
435
436
437
438
            transforms.ElasticTransform(1.0, [1.0, 2.0, 3.0])

        with pytest.raises(TypeError, match="Got inappropriate fill arg"):
            transforms.ElasticTransform(1.0, 2.0, fill="abc")

Philip Meier's avatar
Philip Meier committed
439
    def test__get_params(self):
440
441
442
        alpha = 2.0
        sigma = 3.0
        transform = transforms.ElasticTransform(alpha, sigma)
Philip Meier's avatar
Philip Meier committed
443
444
445

        h, w = size = (24, 32)
        image = make_image(size)
446
447
448
449
450
451
452
453
454
455
456
457

        params = transform._get_params([image])

        displacement = params["displacement"]
        assert displacement.shape == (1, h, w, 2)
        assert (-alpha / w <= displacement[0, ..., 0]).all() and (displacement[0, ..., 0] <= alpha / w).all()
        assert (-alpha / h <= displacement[0, ..., 1]).all() and (displacement[0, ..., 1] <= alpha / h).all()


class TestTransform:
    @pytest.mark.parametrize(
        "inpt_type",
458
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    )
    def test_check_transformed_types(self, inpt_type, mocker):
        # This test ensures that we correctly handle which types to transform and which to bypass
        t = transforms.Transform()
        inpt = mocker.MagicMock(spec=inpt_type)

        if inpt_type in (np.ndarray, str, int):
            output = t(inpt)
            assert output is inpt
        else:
            with pytest.raises(NotImplementedError):
                t(inpt)


473
class TestToImage:
474
475
    @pytest.mark.parametrize(
        "inpt_type",
476
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
477
478
479
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch(
480
            "torchvision.transforms.v2.functional.to_image",
481
482
483
484
            return_value=torch.rand(1, 3, 8, 8),
        )

        inpt = mocker.MagicMock(spec=inpt_type)
485
        transform = transforms.ToImage()
486
        transform(inpt)
487
        if inpt_type in (tv_tensors.BoundingBoxes, tv_tensors.Image, str, int):
488
489
490
491
492
493
494
495
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestToPILImage:
    @pytest.mark.parametrize(
        "inpt_type",
496
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
497
498
    )
    def test__transform(self, inpt_type, mocker):
499
        fn = mocker.patch("torchvision.transforms.v2.functional.to_pil_image")
500
501
502
503

        inpt = mocker.MagicMock(spec=inpt_type)
        transform = transforms.ToPILImage()
        transform(inpt)
504
        if inpt_type in (PIL.Image.Image, tv_tensors.BoundingBoxes, str, int):
505
506
507
508
509
510
511
512
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt, mode=transform.mode)


class TestToTensor:
    @pytest.mark.parametrize(
        "inpt_type",
513
        [torch.Tensor, PIL.Image.Image, tv_tensors.Image, np.ndarray, tv_tensors.BoundingBoxes, str, int],
514
515
516
517
518
519
520
521
    )
    def test__transform(self, inpt_type, mocker):
        fn = mocker.patch("torchvision.transforms.functional.to_tensor")

        inpt = mocker.MagicMock(spec=inpt_type)
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            transform = transforms.ToTensor()
        transform(inpt)
522
        if inpt_type in (tv_tensors.Image, torch.Tensor, tv_tensors.BoundingBoxes, str, int):
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            assert fn.call_count == 0
        else:
            fn.assert_called_once_with(inpt)


class TestContainers:
    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    def test_assertions(self, transform_cls):
        with pytest.raises(TypeError, match="Argument transforms should be a sequence of callables"):
            transform_cls(transforms.RandomCrop(28))

    @pytest.mark.parametrize("transform_cls", [transforms.Compose, transforms.RandomChoice, transforms.RandomOrder])
    @pytest.mark.parametrize(
        "trfms",
        [
            [transforms.Pad(2), transforms.RandomCrop(28)],
            [lambda x: 2.0 * x, transforms.Pad(2), transforms.RandomCrop(28)],
            [transforms.Pad(2), lambda x: 2.0 * x, transforms.RandomCrop(28)],
        ],
    )
    def test_ctor(self, transform_cls, trfms):
        c = transform_cls(trfms)
        inpt = torch.rand(1, 3, 32, 32)
        output = c(inpt)
        assert isinstance(output, torch.Tensor)
        assert output.ndim == 4


class TestRandomChoice:
    def test_assertions(self):
553
        with pytest.raises(ValueError, match="Length of p doesn't match the number of transforms"):
554
            transforms.RandomChoice([transforms.Pad(2), transforms.RandomCrop(28)], p=[1])
555
556
557


class TestRandomIoUCrop:
558
    @pytest.mark.parametrize("device", cpu_and_cuda())
559
    @pytest.mark.parametrize("options", [[0.5, 0.9], [2.0]])
Philip Meier's avatar
Philip Meier committed
560
561
562
    def test__get_params(self, device, options):
        orig_h, orig_w = size = (24, 32)
        image = make_image(size)
563
        bboxes = tv_tensors.BoundingBoxes(
564
565
            torch.tensor([[1, 1, 10, 10], [20, 20, 23, 23], [1, 20, 10, 23], [20, 1, 23, 10]]),
            format="XYXY",
Philip Meier's avatar
Philip Meier committed
566
            canvas_size=size,
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
            device=device,
        )
        sample = [image, bboxes]

        transform = transforms.RandomIoUCrop(sampler_options=options)

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params(sample)

            if options == [2.0]:
                assert len(params) == 0
                return

            assert len(params["is_within_crop_area"]) > 0
            assert params["is_within_crop_area"].dtype == torch.bool

            assert int(transform.min_scale * orig_h) <= params["height"] <= int(transform.max_scale * orig_h)
            assert int(transform.min_scale * orig_w) <= params["width"] <= int(transform.max_scale * orig_w)

            left, top = params["left"], params["top"]
            new_h, new_w = params["height"], params["width"]
            ious = box_iou(
                bboxes,
                torch.tensor([[left, top, left + new_w, top + new_h]], dtype=bboxes.dtype, device=bboxes.device),
            )
            assert ious.max() >= options[0] or ious.max() >= options[1], f"{ious} vs {options}"

    def test__transform_empty_params(self, mocker):
        transform = transforms.RandomIoUCrop(sampler_options=[2.0])
598
599
        image = tv_tensors.Image(torch.rand(1, 3, 4, 4))
        bboxes = tv_tensors.BoundingBoxes(torch.tensor([[1, 1, 2, 2]]), format="XYXY", canvas_size=(4, 4))
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        label = torch.tensor([1])
        sample = [image, bboxes, label]
        # Let's mock transform._get_params to control the output:
        transform._get_params = mocker.MagicMock(return_value={})
        output = transform(sample)
        torch.testing.assert_close(output, sample)

    def test_forward_assertion(self):
        transform = transforms.RandomIoUCrop()
        with pytest.raises(
            TypeError,
            match="requires input sample to contain tensor or PIL images and bounding boxes",
        ):
            transform(torch.tensor(0))

    def test__transform(self, mocker):
        transform = transforms.RandomIoUCrop()

Philip Meier's avatar
Philip Meier committed
618
619
        size = (32, 24)
        image = make_image(size)
620
        bboxes = make_bounding_boxes(format="XYXY", canvas_size=size, batch_dims=(6,))
Philip Meier's avatar
Philip Meier committed
621
        masks = make_detection_mask(size, num_objects=6)
622
623
624
625
626
627
628
629
630
631
632

        sample = [image, bboxes, masks]

        is_within_crop_area = torch.tensor([0, 1, 0, 1, 0, 1], dtype=torch.bool)

        params = dict(top=1, left=2, height=12, width=12, is_within_crop_area=is_within_crop_area)
        transform._get_params = mocker.MagicMock(return_value=params)
        output = transform(sample)

        # check number of bboxes vs number of labels:
        output_bboxes = output[1]
633
        assert isinstance(output_bboxes, tv_tensors.BoundingBoxes)
634
635
636
        assert (output_bboxes[~is_within_crop_area] == 0).all()

        output_masks = output[2]
637
        assert isinstance(output_masks, tv_tensors.Mask)
638
639
640


class TestScaleJitter:
Philip Meier's avatar
Philip Meier committed
641
642
    def test__get_params(self):
        canvas_size = (24, 32)
643
644
645
646
        target_size = (16, 12)
        scale_range = (0.5, 1.5)

        transform = transforms.ScaleJitter(target_size=target_size, scale_range=scale_range)
Philip Meier's avatar
Philip Meier committed
647
648

        sample = make_image(canvas_size)
649
650
651
652
653
654
655
656
657
658
659
660

        n_samples = 5
        for _ in range(n_samples):

            params = transform._get_params([sample])

            assert "size" in params
            size = params["size"]

            assert isinstance(size, tuple) and len(size) == 2
            height, width = size

Philip Meier's avatar
Philip Meier committed
661
662
            r_min = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[0]
            r_max = min(target_size[1] / canvas_size[0], target_size[0] / canvas_size[1]) * scale_range[1]
663

Philip Meier's avatar
Philip Meier committed
664
665
            assert int(canvas_size[0] * r_min) <= height <= int(canvas_size[0] * r_max)
            assert int(canvas_size[1] * r_min) <= width <= int(canvas_size[1] * r_max)
666
667
668
669


class TestRandomShortestSize:
    @pytest.mark.parametrize("min_size,max_size", [([5, 9], 20), ([5, 9], None)])
Philip Meier's avatar
Philip Meier committed
670
671
    def test__get_params(self, min_size, max_size):
        canvas_size = (3, 10)
672

673
        transform = transforms.RandomShortestSize(min_size=min_size, max_size=max_size, antialias=True)
674

Philip Meier's avatar
Philip Meier committed
675
        sample = make_image(canvas_size)
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        params = transform._get_params([sample])

        assert "size" in params
        size = params["size"]

        assert isinstance(size, tuple) and len(size) == 2

        longer = max(size)
        shorter = min(size)
        if max_size is not None:
            assert longer <= max_size
            assert shorter <= max_size
        else:
            assert shorter in min_size


class TestLinearTransformation:
    def test_assertions(self):
        with pytest.raises(ValueError, match="transformation_matrix should be square"):
            transforms.LinearTransformation(torch.rand(2, 3), torch.rand(5))

        with pytest.raises(ValueError, match="mean_vector should have the same length"):
            transforms.LinearTransformation(torch.rand(3, 3), torch.rand(5))

    @pytest.mark.parametrize(
        "inpt",
        [
            122 * torch.ones(1, 3, 8, 8),
            122.0 * torch.ones(1, 3, 8, 8),
705
            tv_tensors.Image(122 * torch.ones(1, 3, 8, 8)),
706
707
708
709
710
711
712
713
714
715
            PIL.Image.new("RGB", (8, 8), (122, 122, 122)),
        ],
    )
    def test__transform(self, inpt):

        v = 121 * torch.ones(3 * 8 * 8)
        m = torch.ones(3 * 8 * 8, 3 * 8 * 8)
        transform = transforms.LinearTransformation(m, v)

        if isinstance(inpt, PIL.Image.Image):
716
            with pytest.raises(TypeError, match="does not support PIL images"):
717
718
719
720
721
722
723
724
725
726
727
728
729
                transform(inpt)
        else:
            output = transform(inpt)
            assert isinstance(output, torch.Tensor)
            assert output.unique() == 3 * 8 * 8
            assert output.dtype == inpt.dtype


class TestRandomResize:
    def test__get_params(self):
        min_size = 3
        max_size = 6

730
        transform = transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

        for _ in range(10):
            params = transform._get_params([])

            assert isinstance(params["size"], list) and len(params["size"]) == 1
            size = params["size"][0]

            assert min_size <= size < max_size


class TestUniformTemporalSubsample:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.zeros(10, 3, 8, 8),
            torch.zeros(1, 10, 3, 8, 8),
747
            tv_tensors.Video(torch.zeros(1, 10, 3, 8, 8)),
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        ],
    )
    def test__transform(self, inpt):
        num_samples = 5
        transform = transforms.UniformTemporalSubsample(num_samples)

        output = transform(inpt)
        assert type(output) is type(inpt)
        assert output.shape[-4] == num_samples
        assert output.dtype == inpt.dtype


# TODO: remove this test in 0.17 when the default of antialias changes to True
def test_antialias_warning():
    pil_img = PIL.Image.new("RGB", size=(10, 10), color=127)
    tensor_img = torch.randint(0, 256, size=(3, 10, 10), dtype=torch.uint8)
    tensor_video = torch.randint(0, 256, size=(2, 3, 10, 10), dtype=torch.uint8)

    match = "The default value of the antialias parameter"
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResizedCrop((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.ScaleJitter((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomShortestSize((20, 20))(tensor_img)
    with pytest.warns(UserWarning, match=match):
        transforms.RandomResize(10, 20)(tensor_img)

    with pytest.warns(UserWarning, match=match):
777
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20))
778
779

    with pytest.warns(UserWarning, match=match):
780
        F.resize(tv_tensors.Video(tensor_video), (20, 20))
781
    with pytest.warns(UserWarning, match=match):
782
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20))
783
784
785
786
787
788
789
790
791
792
793
794
795

    with warnings.catch_warnings():
        warnings.simplefilter("error")
        transforms.RandomResizedCrop((20, 20))(pil_img)
        transforms.ScaleJitter((20, 20))(pil_img)
        transforms.RandomShortestSize((20, 20))(pil_img)
        transforms.RandomResize(10, 20)(pil_img)

        transforms.RandomResizedCrop((20, 20), antialias=True)(tensor_img)
        transforms.ScaleJitter((20, 20), antialias=True)(tensor_img)
        transforms.RandomShortestSize((20, 20), antialias=True)(tensor_img)
        transforms.RandomResize(10, 20, antialias=True)(tensor_img)

796
797
        F.resized_crop(tv_tensors.Image(tensor_img), 0, 0, 10, 10, (20, 20), antialias=True)
        F.resized_crop(tv_tensors.Video(tensor_video), 0, 0, 10, 10, (20, 20), antialias=True)
798
799


800
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
801
802
@pytest.mark.parametrize("label_type", (torch.Tensor, int))
@pytest.mark.parametrize("dataset_return_type", (dict, tuple))
803
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
804
805
def test_classif_preset(image_type, label_type, dataset_return_type, to_tensor):

806
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 250, 250), dtype=torch.uint8))
807
808
809
810
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
811
        assert is_pure_tensor(image)
812
813
814
815
816
817
818
819
820
821
822

    label = 1 if label_type is int else torch.tensor([1])

    if dataset_return_type is dict:
        sample = {
            "image": image,
            "label": label,
        }
    else:
        sample = image, label

823
824
825
826
827
828
    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

829
830
    t = transforms.Compose(
        [
831
            transforms.RandomResizedCrop((224, 224), antialias=True),
832
833
834
835
836
            transforms.RandomHorizontalFlip(p=1),
            transforms.RandAugment(),
            transforms.TrivialAugmentWide(),
            transforms.AugMix(),
            transforms.AutoAugment(),
837
            to_tensor,
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
            # TODO: ConvertImageDtype is a pass-through on PIL images, is that
            # intended?  This results in a failure if we convert to tensor after
            # it, because the image would still be uint8 which make Normalize
            # fail.
            transforms.ConvertImageDtype(torch.float),
            transforms.Normalize(mean=[0, 0, 0], std=[1, 1, 1]),
            transforms.RandomErasing(p=1),
        ]
    )

    out = t(sample)

    assert type(out) == type(sample)

    if dataset_return_type is tuple:
        out_image, out_label = out
    else:
        assert out.keys() == sample.keys()
        out_image, out_label = out.values()

    assert out_image.shape[-2:] == (224, 224)
    assert out_label == label


862
@pytest.mark.parametrize("image_type", (PIL.Image, torch.Tensor, tv_tensors.Image))
863
@pytest.mark.parametrize("data_augmentation", ("hflip", "lsj", "multiscale", "ssd", "ssdlite"))
864
@pytest.mark.parametrize("to_tensor", (transforms.ToTensor, transforms.ToImage))
865
866
867
@pytest.mark.parametrize("sanitize", (True, False))
def test_detection_preset(image_type, data_augmentation, to_tensor, sanitize):
    torch.manual_seed(0)
868
869
870
871
872
873
874

    if to_tensor is transforms.ToTensor:
        with pytest.warns(UserWarning, match="deprecated and will be removed"):
            to_tensor = to_tensor()
    else:
        to_tensor = to_tensor()

875
876
877
    if data_augmentation == "hflip":
        t = [
            transforms.RandomHorizontalFlip(p=1),
878
            to_tensor,
879
880
881
882
883
884
885
886
887
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "lsj":
        t = [
            transforms.ScaleJitter(target_size=(1024, 1024), antialias=True),
            # Note: replaced FixedSizeCrop with RandomCrop, becuase we're
            # leaving FixedSizeCrop in prototype for now, and it expects Label
            # classes which we won't release yet.
            # transforms.FixedSizeCrop(
888
            #     size=(1024, 1024), fill=defaultdict(lambda: (123.0, 117.0, 104.0), {tv_tensors.Mask: 0})
889
890
891
            # ),
            transforms.RandomCrop((1024, 1024), pad_if_needed=True),
            transforms.RandomHorizontalFlip(p=1),
892
            to_tensor,
893
894
895
896
897
898
899
900
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "multiscale":
        t = [
            transforms.RandomShortestSize(
                min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333, antialias=True
            ),
            transforms.RandomHorizontalFlip(p=1),
901
            to_tensor,
902
903
904
905
906
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssd":
        t = [
            transforms.RandomPhotometricDistort(p=1),
907
            transforms.RandomZoomOut(fill={"others": (123.0, 117.0, 104.0), tv_tensors.Mask: 0}, p=1),
908
909
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
910
            to_tensor,
911
912
913
914
915
916
            transforms.ConvertImageDtype(torch.float),
        ]
    elif data_augmentation == "ssdlite":
        t = [
            transforms.RandomIoUCrop(),
            transforms.RandomHorizontalFlip(p=1),
917
            to_tensor,
918
919
920
            transforms.ConvertImageDtype(torch.float),
        ]
    if sanitize:
921
        t += [transforms.SanitizeBoundingBoxes()]
922
923
924
925
926
    t = transforms.Compose(t)

    num_boxes = 5
    H = W = 250

927
    image = tv_tensors.Image(torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8))
928
929
930
931
    if image_type is PIL.Image:
        image = to_pil_image(image[0])
    elif image_type is torch.Tensor:
        image = image.as_subclass(torch.Tensor)
932
        assert is_pure_tensor(image)
933
934
935
936
937
938

    label = torch.randint(0, 10, size=(num_boxes,))

    boxes = torch.randint(0, min(H, W) // 2, size=(num_boxes, 4))
    boxes[:, 2:] += boxes[:, :2]
    boxes = boxes.clamp(min=0, max=min(H, W))
939
    boxes = tv_tensors.BoundingBoxes(boxes, format="XYXY", canvas_size=(H, W))
940

941
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(num_boxes, H, W), dtype=torch.uint8))
942
943
944
945
946
947
948
949
950
951

    sample = {
        "image": image,
        "label": label,
        "boxes": boxes,
        "masks": masks,
    }

    out = t(sample)

952
    if isinstance(to_tensor, transforms.ToTensor) and image_type is not tv_tensors.Image:
953
        assert is_pure_tensor(out["image"])
954
    else:
955
        assert isinstance(out["image"], tv_tensors.Image)
956
957
958
959
960
961
    assert isinstance(out["label"], type(sample["label"]))

    num_boxes_expected = {
        # ssd and ssdlite contain RandomIoUCrop which may "remove" some bbox. It
        # doesn't remove them strictly speaking, it just marks some boxes as
        # degenerate and those boxes will be later removed by
962
        # SanitizeBoundingBoxes(), which we add to the pipelines if the sanitize
963
964
965
        # param is True.
        # Note that the values below are probably specific to the random seed
        # set above (which is fine).
966
        (True, "ssd"): 5,
967
968
969
970
971
972
973
        (True, "ssdlite"): 4,
    }.get((sanitize, data_augmentation), num_boxes)

    assert out["boxes"].shape[0] == out["masks"].shape[0] == out["label"].shape[0] == num_boxes_expected


@pytest.mark.parametrize("min_size", (1, 10))
974
@pytest.mark.parametrize("labels_getter", ("default", lambda inputs: inputs["labels"], None, lambda inputs: None))
975
976
977
978
979
980
981
982
@pytest.mark.parametrize("sample_type", (tuple, dict))
def test_sanitize_bounding_boxes(min_size, labels_getter, sample_type):

    if sample_type is tuple and not isinstance(labels_getter, str):
        # The "lambda inputs: inputs["labels"]" labels_getter used in this test
        # doesn't work if the input is a tuple.
        return

983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    H, W = 256, 128

    boxes_and_validity = [
        ([0, 1, 10, 1], False),  # Y1 == Y2
        ([0, 1, 0, 20], False),  # X1 == X2
        ([0, 0, min_size - 1, 10], False),  # H < min_size
        ([0, 0, 10, min_size - 1], False),  # W < min_size
        ([0, 0, 10, H + 1], False),  # Y2 > H
        ([0, 0, W + 1, 10], False),  # X2 > W
        ([-1, 1, 10, 20], False),  # any < 0
        ([0, 0, -1, 20], False),  # any < 0
        ([0, 0, -10, -1], False),  # any < 0
        ([0, 0, min_size, 10], True),  # H < min_size
        ([0, 0, 10, min_size], True),  # W < min_size
        ([0, 0, W, H], True),  # TODO: Is that actually OK?? Should it be -1?
        ([1, 1, 30, 20], True),
        ([0, 0, 10, 10], True),
        ([1, 1, 30, 20], True),
    ]

    random.shuffle(boxes_and_validity)  # For test robustness: mix order of wrong and correct cases
    boxes, is_valid_mask = zip(*boxes_and_validity)
    valid_indices = [i for (i, is_valid) in enumerate(is_valid_mask) if is_valid]

    boxes = torch.tensor(boxes)
    labels = torch.arange(boxes.shape[0])

1010
    boxes = tv_tensors.BoundingBoxes(
1011
        boxes,
1012
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1013
        canvas_size=(H, W),
1014
1015
    )

1016
    masks = tv_tensors.Mask(torch.randint(0, 2, size=(boxes.shape[0], H, W)))
1017
1018
    whatever = torch.rand(10)
    input_img = torch.randint(0, 256, size=(1, 3, H, W), dtype=torch.uint8)
1019
    sample = {
1020
        "image": input_img,
1021
1022
        "labels": labels,
        "boxes": boxes,
1023
        "whatever": whatever,
1024
1025
1026
1027
        "None": None,
        "masks": masks,
    }

1028
1029
1030
1031
    if sample_type is tuple:
        img = sample.pop("image")
        sample = (img, sample)

1032
    out = transforms.SanitizeBoundingBoxes(min_size=min_size, labels_getter=labels_getter)(sample)
1033

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
    if sample_type is tuple:
        out_image = out[0]
        out_labels = out[1]["labels"]
        out_boxes = out[1]["boxes"]
        out_masks = out[1]["masks"]
        out_whatever = out[1]["whatever"]
    else:
        out_image = out["image"]
        out_labels = out["labels"]
        out_boxes = out["boxes"]
        out_masks = out["masks"]
        out_whatever = out["whatever"]

    assert out_image is input_img
    assert out_whatever is whatever
1049

1050
1051
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
    assert isinstance(out_masks, tv_tensors.Mask)
1052

1053
    if labels_getter is None or (callable(labels_getter) and labels_getter({"labels": "blah"}) is None):
1054
        assert out_labels is labels
1055
    else:
1056
1057
        assert isinstance(out_labels, torch.Tensor)
        assert out_boxes.shape[0] == out_labels.shape[0] == out_masks.shape[0]
1058
        # This works because we conveniently set labels to arange(num_boxes)
1059
        assert out_labels.tolist() == valid_indices
1060
1061


1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
def test_sanitize_bounding_boxes_no_label():
    # Non-regression test for https://github.com/pytorch/vision/issues/7878

    img = make_image()
    boxes = make_bounding_boxes()

    with pytest.raises(ValueError, match="or a two-tuple whose second item is a dict"):
        transforms.SanitizeBoundingBoxes()(img, boxes)

    out_img, out_boxes = transforms.SanitizeBoundingBoxes(labels_getter=None)(img, boxes)
1072
1073
    assert isinstance(out_img, tv_tensors.Image)
    assert isinstance(out_boxes, tv_tensors.BoundingBoxes)
1074
1075


1076
1077
def test_sanitize_bounding_boxes_errors():

1078
    good_bbox = tv_tensors.BoundingBoxes(
1079
        [[0, 0, 10, 10]],
1080
        format=tv_tensors.BoundingBoxFormat.XYXY,
Philip Meier's avatar
Philip Meier committed
1081
        canvas_size=(20, 20),
1082
1083
1084
    )

    with pytest.raises(ValueError, match="min_size must be >= 1"):
1085
        transforms.SanitizeBoundingBoxes(min_size=0)
1086
    with pytest.raises(ValueError, match="labels_getter should either be 'default'"):
1087
        transforms.SanitizeBoundingBoxes(labels_getter=12)
1088
1089
1090

    with pytest.raises(ValueError, match="Could not infer where the labels are"):
        bad_labels_key = {"bbox": good_bbox, "BAD_KEY": torch.arange(good_bbox.shape[0])}
1091
        transforms.SanitizeBoundingBoxes()(bad_labels_key)
1092
1093
1094

    with pytest.raises(ValueError, match="must be a tensor"):
        not_a_tensor = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0]).tolist()}
1095
        transforms.SanitizeBoundingBoxes()(not_a_tensor)
1096
1097
1098

    with pytest.raises(ValueError, match="Number of boxes"):
        different_sizes = {"bbox": good_bbox, "labels": torch.arange(good_bbox.shape[0] + 3)}
1099
        transforms.SanitizeBoundingBoxes()(different_sizes)
1100

1101

Philip Meier's avatar
Philip Meier committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
class TestLambda:
    inputs = pytest.mark.parametrize("input", [object(), torch.empty(()), np.empty(()), "string", 1, 0.0])

    @inputs
    def test_default(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        transform = transforms.Lambda(was_applied_fn)

        transform(input)

        assert was_applied

    @inputs
    def test_with_types(self, input):
        was_applied = False

        def was_applied_fn(input):
            nonlocal was_applied
            was_applied = True
            return input

        types = (torch.Tensor, np.ndarray)
        transform = transforms.Lambda(was_applied_fn, *types)

        transform(input)

        assert was_applied is isinstance(input, types)