boxes.py 12 KB
Newer Older
Aditya Oke's avatar
Aditya Oke committed
1
from typing import Tuple
2
3

import torch
4
import torchvision
5
from torch import Tensor
6
from torchvision.extension import _assert_has_ops
7

8
from ..utils import _log_api_usage_once
9
10
from ._box_convert import _box_cxcywh_to_xyxy, _box_xyxy_to_cxcywh, _box_xywh_to_xyxy, _box_xyxy_to_xywh

11

12
def nms(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor:
13
14
15
16
17
18
19
20
    """
    Performs non-maximum suppression (NMS) on the boxes according
    to their intersection-over-union (IoU).

    NMS iteratively removes lower scoring boxes which have an
    IoU greater than iou_threshold with another (higher scoring)
    box.

Francisco Massa's avatar
Francisco Massa committed
21
22
23
    If multiple boxes have the exact same score and satisfy the IoU
    criterion with respect to a reference box, the selected box is
    not guaranteed to be the same between CPU and GPU. This is similar
24
25
    to the behavior of argsort in PyTorch when repeated values are present.

26
27
    Args:
        boxes (Tensor[N, 4])): boxes to perform NMS on. They
28
29
            are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and
            ``0 <= y1 < y2``.
30
31
        scores (Tensor[N]): scores for each one of the boxes
        iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold
32

33
    Returns:
34
35
        Tensor: int64 tensor with the indices of the elements that have been kept
        by NMS, sorted in decreasing order of scores
36
    """
37
    _log_api_usage_once("ops", "nms")
38
    _assert_has_ops()
39
    return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
40
41


42
43
44
45
46
47
def batched_nms(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
48
49
50
51
52
53
    """
    Performs non-maximum suppression in a batched fashion.

    Each index value correspond to a category, and NMS
    will not be applied between elements of different categories.

54
55
    Args:
        boxes (Tensor[N, 4]): boxes where NMS will be performed. They
56
57
            are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and
            ``0 <= y1 < y2``.
58
59
60
        scores (Tensor[N]): scores for each one of the boxes
        idxs (Tensor[N]): indices of the categories for each one of the boxes.
        iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold
61

62
    Returns:
63
64
        Tensor: int64 tensor with the indices of the elements that have been kept by NMS, sorted
        in decreasing order of scores
65
    """
66
    _log_api_usage_once("ops", "batched_nms")
67
68
    # Benchmarks that drove the following thresholds are at
    # https://github.com/pytorch/vision/issues/1311#issuecomment-781329339
69
    if boxes.numel() > (4000 if boxes.device.type == "cpu" else 20000) and not torchvision._is_tracing():
70
71
72
73
74
75
76
77
78
79
80
81
82
        return _batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
    else:
        return _batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)


@torch.jit._script_if_tracing
def _batched_nms_coordinate_trick(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    # strategy: in order to perform NMS independently per class,
83
84
85
    # we add an offset to all the boxes. The offset is dependent
    # only on the class idx, and is large enough so that boxes
    # from different classes do not overlap
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)
    max_coordinate = boxes.max()
    offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
    boxes_for_nms = boxes + offsets[:, None]
    keep = nms(boxes_for_nms, scores, iou_threshold)
    return keep


@torch.jit._script_if_tracing
def _batched_nms_vanilla(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    # Based on Detectron2 implementation, just manually call nms() on each class independently
    keep_mask = torch.zeros_like(scores, dtype=torch.bool)
    for class_id in torch.unique(idxs):
        curr_indices = torch.where(idxs == class_id)[0]
        curr_keep_indices = nms(boxes[curr_indices], scores[curr_indices], iou_threshold)
        keep_mask[curr_indices[curr_keep_indices]] = True
    keep_indices = torch.where(keep_mask)[0]
    return keep_indices[scores[keep_indices].sort(descending=True)[1]]
110
111


112
def remove_small_boxes(boxes: Tensor, min_size: float) -> Tensor:
113
114
115
    """
    Remove boxes which contains at least one side smaller than min_size.

116
    Args:
117
118
        boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format
            with ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
eellison's avatar
eellison committed
119
        min_size (float): minimum size
120
121

    Returns:
122
123
        Tensor[K]: indices of the boxes that have both sides
        larger than min_size
124
    """
125
    _log_api_usage_once("ops", "remove_small_boxes")
126
127
    ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
    keep = (ws >= min_size) & (hs >= min_size)
128
    keep = torch.where(keep)[0]
129
130
131
    return keep


132
def clip_boxes_to_image(boxes: Tensor, size: Tuple[int, int]) -> Tensor:
133
    """
134
135
    Clip boxes so that they lie inside an image of size `size`.

136
    Args:
137
138
        boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format
            with ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
139
        size (Tuple[height, width]): size of the image
140
141

    Returns:
142
        Tensor[N, 4]: clipped boxes
143
    """
144
    _log_api_usage_once("ops", "clip_boxes_to_image")
145
146
147
148
    dim = boxes.dim()
    boxes_x = boxes[..., 0::2]
    boxes_y = boxes[..., 1::2]
    height, width = size
149
150
151
152
153
154
155
156
157
158

    if torchvision._is_tracing():
        boxes_x = torch.max(boxes_x, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.max(boxes_y, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, device=boxes.device))
    else:
        boxes_x = boxes_x.clamp(min=0, max=width)
        boxes_y = boxes_y.clamp(min=0, max=height)

159
160
161
162
    clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim)
    return clipped_boxes.reshape(boxes.shape)


163
164
165
166
167
168
def box_convert(boxes: Tensor, in_fmt: str, out_fmt: str) -> Tensor:
    """
    Converts boxes from given in_fmt to out_fmt.
    Supported in_fmt and out_fmt are:

    'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
169
    This is the format that torchvision utilities expect.
170
171
172
173
174
175

    'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.

    'cxcywh' : boxes are represented via centre, width and height, cx, cy being center of box, w, h
    being width and height.

176
    Args:
177
178
179
180
181
        boxes (Tensor[N, 4]): boxes which will be converted.
        in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'].
        out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']

    Returns:
182
        Tensor[N, 4]: Boxes into converted format.
183
    """
184

185
    _log_api_usage_once("ops", "box_convert")
186
    allowed_fmts = ("xyxy", "xywh", "cxcywh")
187
188
    if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts:
        raise ValueError("Unsupported Bounding Box Conversions for given in_fmt and out_fmt")
189
190

    if in_fmt == out_fmt:
191
        return boxes.clone()
192

193
    if in_fmt != "xyxy" and out_fmt != "xyxy":
194
        # convert to xyxy and change in_fmt xyxy
195
        if in_fmt == "xywh":
196
            boxes = _box_xywh_to_xyxy(boxes)
197
        elif in_fmt == "cxcywh":
198
            boxes = _box_cxcywh_to_xyxy(boxes)
199
        in_fmt = "xyxy"
200
201
202
203
204
205
206
207
208
209
210
211

    if in_fmt == "xyxy":
        if out_fmt == "xywh":
            boxes = _box_xyxy_to_xywh(boxes)
        elif out_fmt == "cxcywh":
            boxes = _box_xyxy_to_cxcywh(boxes)
    elif out_fmt == "xyxy":
        if in_fmt == "xywh":
            boxes = _box_xywh_to_xyxy(boxes)
        elif in_fmt == "cxcywh":
            boxes = _box_cxcywh_to_xyxy(boxes)
    return boxes
212
213


214
215
216
217
218
219
220
221
def _upcast(t: Tensor) -> Tensor:
    # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
    if t.is_floating_point():
        return t if t.dtype in (torch.float32, torch.float64) else t.float()
    else:
        return t if t.dtype in (torch.int32, torch.int64) else t.int()


222
def box_area(boxes: Tensor) -> Tensor:
223
    """
224
    Computes the area of a set of bounding boxes, which are specified by their
225
    (x1, y1, x2, y2) coordinates.
226

227
    Args:
228
        boxes (Tensor[N, 4]): boxes for which the area will be computed. They
229
230
            are expected to be in (x1, y1, x2, y2) format with
            ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
231
232

    Returns:
233
        Tensor[N]: the area for each box
234
    """
235
    _log_api_usage_once("ops", "box_area")
236
    boxes = _upcast(boxes)
237
238
239
240
241
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
242
243
244
245
246
247
248
def _box_inter_union(boxes1: Tensor, boxes2: Tensor) -> Tuple[Tensor, Tensor]:
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

249
    wh = _upcast(rb - lt).clamp(min=0)  # [N,M,2]
250
251
252
253
254
255
256
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    return inter, union


257
def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
258
    """
259
    Return intersection-over-union (Jaccard index) between two sets of boxes.
260

261
262
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
263

264
    Args:
265
266
        boxes1 (Tensor[N, 4]): first set of boxes
        boxes2 (Tensor[M, 4]): second set of boxes
267
268

    Returns:
269
        Tensor[N, M]: the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
270
    """
271
    _log_api_usage_once("ops", "box_iou")
272
273
    inter, union = _box_inter_union(boxes1, boxes2)
    iou = inter / union
274
    return iou
Aditya Oke's avatar
Aditya Oke committed
275
276
277
278
279


# Implementation adapted from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """
280
    Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
Aditya Oke's avatar
Aditya Oke committed
281

282
283
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
Aditya Oke's avatar
Aditya Oke committed
284

285
    Args:
286
287
        boxes1 (Tensor[N, 4]): first set of boxes
        boxes2 (Tensor[M, 4]): second set of boxes
Aditya Oke's avatar
Aditya Oke committed
288
289

    Returns:
290
        Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
Aditya Oke's avatar
Aditya Oke committed
291
292
293
        for every element in boxes1 and boxes2
    """

294
    _log_api_usage_once("ops", "generalized_box_iou")
Aditya Oke's avatar
Aditya Oke committed
295
296
297
298
299
    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()

300
    inter, union = _box_inter_union(boxes1, boxes2)
Aditya Oke's avatar
Aditya Oke committed
301
302
303
304
305
    iou = inter / union

    lti = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

306
    whi = _upcast(rbi - lti).clamp(min=0)  # [N,M,2]
Aditya Oke's avatar
Aditya Oke committed
307
308
309
    areai = whi[:, :, 0] * whi[:, :, 1]

    return iou - (areai - union) / areai
310
311
312
313


def masks_to_boxes(masks: torch.Tensor) -> torch.Tensor:
    """
314
    Compute the bounding boxes around the provided masks.
315

316
    Returns a [N, 4] tensor containing bounding boxes. The boxes are in ``(x1, y1, x2, y2)`` format with
317
318
319
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.

    Args:
320
321
        masks (Tensor[N, H, W]): masks to transform where N is the number of masks
            and (H, W) are the spatial dimensions.
322
323
324
325

    Returns:
        Tensor[N, 4]: bounding boxes
    """
326
    _log_api_usage_once("ops", "masks_to_boxes")
327
    if masks.numel() == 0:
328
        return torch.zeros((0, 4), device=masks.device, dtype=torch.float)
329
330
331

    n = masks.shape[0]

332
    bounding_boxes = torch.zeros((n, 4), device=masks.device, dtype=torch.float)
333
334

    for index, mask in enumerate(masks):
335
        y, x = torch.where(mask != 0)
336
337
338
339
340
341
342

        bounding_boxes[index, 0] = torch.min(x)
        bounding_boxes[index, 1] = torch.min(y)
        bounding_boxes[index, 2] = torch.max(x)
        bounding_boxes[index, 3] = torch.max(y)

    return bounding_boxes