boxes.py 10.5 KB
Newer Older
1
import torch
eellison's avatar
eellison committed
2
from torch import Tensor
Aditya Oke's avatar
Aditya Oke committed
3
from typing import Tuple
4
from ._box_convert import _box_cxcywh_to_xyxy, _box_xyxy_to_cxcywh, _box_xywh_to_xyxy, _box_xyxy_to_xywh
5
import torchvision
6
from torchvision.extension import _assert_has_ops
7
8


9
def nms(boxes: Tensor, scores: Tensor, iou_threshold: float) -> Tensor:
10
11
12
13
14
15
16
17
    """
    Performs non-maximum suppression (NMS) on the boxes according
    to their intersection-over-union (IoU).

    NMS iteratively removes lower scoring boxes which have an
    IoU greater than iou_threshold with another (higher scoring)
    box.

Francisco Massa's avatar
Francisco Massa committed
18
19
20
    If multiple boxes have the exact same score and satisfy the IoU
    criterion with respect to a reference box, the selected box is
    not guaranteed to be the same between CPU and GPU. This is similar
21
22
    to the behavior of argsort in PyTorch when repeated values are present.

23
24
    Args:
        boxes (Tensor[N, 4])): boxes to perform NMS on. They
25
26
            are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and
            ``0 <= y1 < y2``.
27
28
        scores (Tensor[N]): scores for each one of the boxes
        iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold
29

30
31
32
33
    Returns:
        keep (Tensor): int64 tensor with the indices
            of the elements that have been kept
            by NMS, sorted in decreasing order of scores
34
    """
35
    _assert_has_ops()
36
    return torch.ops.torchvision.nms(boxes, scores, iou_threshold)
37
38


39
40
41
42
43
44
def batched_nms(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
45
46
47
48
49
50
    """
    Performs non-maximum suppression in a batched fashion.

    Each index value correspond to a category, and NMS
    will not be applied between elements of different categories.

51
52
    Args:
        boxes (Tensor[N, 4]): boxes where NMS will be performed. They
53
54
            are expected to be in ``(x1, y1, x2, y2)`` format with ``0 <= x1 < x2`` and
            ``0 <= y1 < y2``.
55
56
57
        scores (Tensor[N]): scores for each one of the boxes
        idxs (Tensor[N]): indices of the categories for each one of the boxes.
        iou_threshold (float): discards all overlapping boxes with IoU > iou_threshold
58

59
60
61
62
    Returns:
        keep (Tensor): int64 tensor with the indices of
            the elements that have been kept by NMS, sorted
            in decreasing order of scores
63
    """
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    # Benchmarks that drove the following thresholds are at
    # https://github.com/pytorch/vision/issues/1311#issuecomment-781329339
    # Ideally for GPU we'd use a higher threshold
    if boxes.numel() > 4_000 and not torchvision._is_tracing():
        return _batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
    else:
        return _batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)


@torch.jit._script_if_tracing
def _batched_nms_coordinate_trick(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    # strategy: in order to perform NMS independently per class,
81
82
83
    # we add an offset to all the boxes. The offset is dependent
    # only on the class idx, and is large enough so that boxes
    # from different classes do not overlap
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    if boxes.numel() == 0:
        return torch.empty((0,), dtype=torch.int64, device=boxes.device)
    max_coordinate = boxes.max()
    offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
    boxes_for_nms = boxes + offsets[:, None]
    keep = nms(boxes_for_nms, scores, iou_threshold)
    return keep


@torch.jit._script_if_tracing
def _batched_nms_vanilla(
    boxes: Tensor,
    scores: Tensor,
    idxs: Tensor,
    iou_threshold: float,
) -> Tensor:
    # Based on Detectron2 implementation, just manually call nms() on each class independently
    keep_mask = torch.zeros_like(scores, dtype=torch.bool)
    for class_id in torch.unique(idxs):
        curr_indices = torch.where(idxs == class_id)[0]
        curr_keep_indices = nms(boxes[curr_indices], scores[curr_indices], iou_threshold)
        keep_mask[curr_indices[curr_keep_indices]] = True
    keep_indices = torch.where(keep_mask)[0]
    return keep_indices[scores[keep_indices].sort(descending=True)[1]]
108
109


110
def remove_small_boxes(boxes: Tensor, min_size: float) -> Tensor:
111
112
113
    """
    Remove boxes which contains at least one side smaller than min_size.

114
    Args:
115
116
        boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format
            with ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
eellison's avatar
eellison committed
117
        min_size (float): minimum size
118
119
120
121
122

    Returns:
        keep (Tensor[K]): indices of the boxes that have both sides
            larger than min_size
    """
123
124
    ws, hs = boxes[:, 2] - boxes[:, 0], boxes[:, 3] - boxes[:, 1]
    keep = (ws >= min_size) & (hs >= min_size)
125
    keep = torch.where(keep)[0]
126
127
128
    return keep


129
def clip_boxes_to_image(boxes: Tensor, size: Tuple[int, int]) -> Tensor:
130
    """
131
132
    Clip boxes so that they lie inside an image of size `size`.

133
    Args:
134
135
        boxes (Tensor[N, 4]): boxes in ``(x1, y1, x2, y2)`` format
            with ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
136
        size (Tuple[height, width]): size of the image
137
138
139
140
141
142
143
144

    Returns:
        clipped_boxes (Tensor[N, 4])
    """
    dim = boxes.dim()
    boxes_x = boxes[..., 0::2]
    boxes_y = boxes[..., 1::2]
    height, width = size
145
146
147
148
149
150
151
152
153
154

    if torchvision._is_tracing():
        boxes_x = torch.max(boxes_x, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_x = torch.min(boxes_x, torch.tensor(width, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.max(boxes_y, torch.tensor(0, dtype=boxes.dtype, device=boxes.device))
        boxes_y = torch.min(boxes_y, torch.tensor(height, dtype=boxes.dtype, device=boxes.device))
    else:
        boxes_x = boxes_x.clamp(min=0, max=width)
        boxes_y = boxes_y.clamp(min=0, max=height)

155
156
157
158
    clipped_boxes = torch.stack((boxes_x, boxes_y), dim=dim)
    return clipped_boxes.reshape(boxes.shape)


159
160
161
162
163
164
165
166
167
168
169
170
def box_convert(boxes: Tensor, in_fmt: str, out_fmt: str) -> Tensor:
    """
    Converts boxes from given in_fmt to out_fmt.
    Supported in_fmt and out_fmt are:

    'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.

    'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being width and height.

    'cxcywh' : boxes are represented via centre, width and height, cx, cy being center of box, w, h
    being width and height.

171
    Args:
172
173
174
175
176
177
178
        boxes (Tensor[N, 4]): boxes which will be converted.
        in_fmt (str): Input format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh'].
        out_fmt (str): Output format of given boxes. Supported formats are ['xyxy', 'xywh', 'cxcywh']

    Returns:
        boxes (Tensor[N, 4]): Boxes into converted format.
    """
179

180
    allowed_fmts = ("xyxy", "xywh", "cxcywh")
181
182
    if in_fmt not in allowed_fmts or out_fmt not in allowed_fmts:
        raise ValueError("Unsupported Bounding Box Conversions for given in_fmt and out_fmt")
183
184

    if in_fmt == out_fmt:
185
        return boxes.clone()
186
187

    if in_fmt != 'xyxy' and out_fmt != 'xyxy':
188
        # convert to xyxy and change in_fmt xyxy
189
        if in_fmt == "xywh":
190
            boxes = _box_xywh_to_xyxy(boxes)
191
        elif in_fmt == "cxcywh":
192
193
194
195
196
197
198
199
200
201
202
203
204
205
            boxes = _box_cxcywh_to_xyxy(boxes)
        in_fmt = 'xyxy'

    if in_fmt == "xyxy":
        if out_fmt == "xywh":
            boxes = _box_xyxy_to_xywh(boxes)
        elif out_fmt == "cxcywh":
            boxes = _box_xyxy_to_cxcywh(boxes)
    elif out_fmt == "xyxy":
        if in_fmt == "xywh":
            boxes = _box_xywh_to_xyxy(boxes)
        elif in_fmt == "cxcywh":
            boxes = _box_cxcywh_to_xyxy(boxes)
    return boxes
206
207


208
209
210
211
212
213
214
215
def _upcast(t: Tensor) -> Tensor:
    # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
    if t.is_floating_point():
        return t if t.dtype in (torch.float32, torch.float64) else t.float()
    else:
        return t if t.dtype in (torch.int32, torch.int64) else t.int()


216
def box_area(boxes: Tensor) -> Tensor:
217
218
    """
    Computes the area of a set of bounding boxes, which are specified by its
219
    (x1, y1, x2, y2) coordinates.
220

221
    Args:
222
        boxes (Tensor[N, 4]): boxes for which the area will be computed. They
223
224
            are expected to be in (x1, y1, x2, y2) format with
            ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
225
226
227
228

    Returns:
        area (Tensor[N]): area for each box
    """
229
    boxes = _upcast(boxes)
230
231
232
233
234
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


# implementation from https://github.com/kuangliu/torchcv/blob/master/torchcv/utils/box.py
# with slight modifications
235
236
237
238
239
240
241
def _box_inter_union(boxes1: Tensor, boxes2: Tensor) -> Tuple[Tensor, Tensor]:
    area1 = box_area(boxes1)
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

242
    wh = _upcast(rb - lt).clamp(min=0)  # [N,M,2]
243
244
245
246
247
248
249
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    return inter, union


250
def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
251
252
253
    """
    Return intersection-over-union (Jaccard index) of boxes.

254
255
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
256

257
    Args:
258
259
260
261
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])

    Returns:
Aditya Oke's avatar
Aditya Oke committed
262
        iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
263
    """
264
265
    inter, union = _box_inter_union(boxes1, boxes2)
    iou = inter / union
266
    return iou
Aditya Oke's avatar
Aditya Oke committed
267
268
269
270
271
272
273


# Implementation adapted from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
    """
    Return generalized intersection-over-union (Jaccard index) of boxes.

274
275
    Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
    ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
Aditya Oke's avatar
Aditya Oke committed
276

277
    Args:
Aditya Oke's avatar
Aditya Oke committed
278
279
280
281
282
283
284
285
286
287
288
289
290
        boxes1 (Tensor[N, 4])
        boxes2 (Tensor[M, 4])

    Returns:
        generalized_iou (Tensor[N, M]): the NxM matrix containing the pairwise generalized_IoU values
        for every element in boxes1 and boxes2
    """

    # degenerate boxes gives inf / nan results
    # so do an early check
    assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
    assert (boxes2[:, 2:] >= boxes2[:, :2]).all()

291
    inter, union = _box_inter_union(boxes1, boxes2)
Aditya Oke's avatar
Aditya Oke committed
292
293
294
295
296
    iou = inter / union

    lti = torch.min(boxes1[:, None, :2], boxes2[:, :2])
    rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

297
    whi = _upcast(rbi - lti).clamp(min=0)  # [N,M,2]
Aditya Oke's avatar
Aditya Oke committed
298
299
300
    areai = whi[:, :, 0] * whi[:, :, 1]

    return iou - (areai - union) / areai