folder.py 6.88 KB
Newer Older
soumith's avatar
soumith committed
1
2
3
import torch.utils.data as data

from PIL import Image
4

soumith's avatar
soumith committed
5
6
import os
import os.path
7
import sys
soumith's avatar
soumith committed
8

9

10
11
def has_file_allowed_extension(filename, extensions):
    """Checks if a file is an allowed extension.
12
13
14

    Args:
        filename (string): path to a file
15
        extensions (iterable of strings): extensions to consider (lowercase)
16
17

    Returns:
18
        bool: True if the filename ends with one of given extensions
19
20
    """
    filename_lower = filename.lower()
21
    return any(filename_lower.endswith(ext) for ext in extensions)
soumith's avatar
soumith committed
22

23

24
25
26
27
28
29
30
31
32
33
34
35
def is_image_file(filename):
    """Checks if a file is an allowed image extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)


36
def make_dataset(dir, class_to_idx, extensions):
soumith's avatar
soumith committed
37
    images = []
38
    dir = os.path.expanduser(dir)
39
    for target in sorted(class_to_idx.keys()):
soumith's avatar
soumith committed
40
41
42
43
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

NC Cullen's avatar
NC Cullen committed
44
        for root, _, fnames in sorted(os.walk(d)):
45
            for fname in sorted(fnames):
46
                if has_file_allowed_extension(fname, extensions):
NC Cullen's avatar
NC Cullen committed
47
48
49
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
soumith's avatar
soumith committed
50
51
52

    return images

53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class DatasetFolder(data.Dataset):
    """A generic data loader where the samples are arranged in this way: ::

        root/class_x/xxx.ext
        root/class_x/xxy.ext
        root/class_x/xxz.ext

        root/class_y/123.ext
        root/class_y/nsdf3.ext
        root/class_y/asd932_.ext

    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
        extensions (list[string]): A list of allowed extensions.
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        samples (list): List of (sample path, class_index) tuples
79
        targets (list): The class_index value for each image in the dataset
80
81
82
    """

    def __init__(self, root, loader, extensions, transform=None, target_transform=None):
83
        classes, class_to_idx = self._find_classes(root)
84
85
86
87
88
89
90
91
92
93
94
95
        samples = make_dataset(root, class_to_idx, extensions)
        if len(samples) == 0:
            raise(RuntimeError("Found 0 files in subfolders of: " + root + "\n"
                               "Supported extensions are: " + ",".join(extensions)))

        self.root = root
        self.loader = loader
        self.extensions = extensions

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
96
        self.targets = [s[1] for s in samples]
97
98
99

        self.transform = transform
        self.target_transform = target_transform
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    def _find_classes(self, dir):
        """
        Finds the class folders in a dataset.

        Args:
            dir (string): Root directory path.

        Returns:
            tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.

        Ensures:
            No class is a subdirectory of another.
        """
114
115
116
117
118
        if sys.version_info >= (3, 5):
            # Faster and available in Python 3.5 and above
            classes = [d.name for d in os.scandir(dir) if d.is_dir()]
        else:
            classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
119
120
121
        classes.sort()
        class_to_idx = {classes[i]: i for i in range(len(classes))}
        return classes, class_to_idx
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

    def __len__(self):
        return len(self.samples)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


154
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
155
156


157
def pil_loader(path):
158
159
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
160
161
        img = Image.open(f)
        return img.convert('RGB')
162
163


164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


181
class ImageFolder(DatasetFolder):
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    """A generic data loader where the images are arranged in this way: ::

        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/xxz.png

        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/asd932_.png

    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.

     Attributes:
        classes (list): List of the class names.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """
205
206
    def __init__(self, root, transform=None, target_transform=None,
                 loader=default_loader):
207
208
209
210
        super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS,
                                          transform=transform,
                                          target_transform=target_transform)
        self.imgs = self.samples