resnet.py 6.31 KB
Newer Older
1
2
from typing import Any, Type, Union, List

3
4
import torch
import torch.nn as nn
5
from torch import Tensor
6
7
from torch.quantization import fuse_modules
from torchvision.models.resnet import Bottleneck, BasicBlock, ResNet, model_urls
8

9
from ..._internally_replaced_utils import load_state_dict_from_url
10
11
from .utils import _replace_relu, quantize_model

12
__all__ = ["QuantizableResNet", "resnet18", "resnet50", "resnext101_32x8d"]
13
14
15


quant_model_urls = {
16
17
18
    "resnet18_fbgemm": "https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth",
    "resnet50_fbgemm": "https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth",
    "resnext101_32x8d_fbgemm": "https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth",
19
20
21
22
}


class QuantizableBasicBlock(BasicBlock):
23
    def __init__(self, *args: Any, **kwargs: Any) -> None:
24
        super().__init__(*args, **kwargs)
25
26
        self.add_relu = torch.nn.quantized.FloatFunctional()

27
    def forward(self, x: Tensor) -> Tensor:
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.add_relu.add_relu(out, identity)

        return out

44
    def fuse_model(self) -> None:
45
        torch.quantization.fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], inplace=True)
46
        if self.downsample:
47
            torch.quantization.fuse_modules(self.downsample, ["0", "1"], inplace=True)
48
49
50


class QuantizableBottleneck(Bottleneck):
51
    def __init__(self, *args: Any, **kwargs: Any) -> None:
52
        super().__init__(*args, **kwargs)
53
54
55
56
        self.skip_add_relu = nn.quantized.FloatFunctional()
        self.relu1 = nn.ReLU(inplace=False)
        self.relu2 = nn.ReLU(inplace=False)

57
    def forward(self, x: Tensor) -> Tensor:
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu2(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)
        out = self.skip_add_relu.add_relu(out, identity)

        return out

75
    def fuse_model(self) -> None:
76
        fuse_modules(self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], inplace=True)
77
        if self.downsample:
78
            torch.quantization.fuse_modules(self.downsample, ["0", "1"], inplace=True)
79
80
81


class QuantizableResNet(ResNet):
82
    def __init__(self, *args: Any, **kwargs: Any) -> None:
83
        super().__init__(*args, **kwargs)
84
85
86
87

        self.quant = torch.quantization.QuantStub()
        self.dequant = torch.quantization.DeQuantStub()

88
    def forward(self, x: Tensor) -> Tensor:
89
90
91
92
        x = self.quant(x)
        # Ensure scriptability
        # super(QuantizableResNet,self).forward(x)
        # is not scriptable
93
        x = self._forward_impl(x)
94
95
96
        x = self.dequant(x)
        return x

97
    def fuse_model(self) -> None:
98
99
100
101
102
103
104
        r"""Fuse conv/bn/relu modules in resnet models

        Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """

105
        fuse_modules(self, ["conv1", "bn1", "relu"], inplace=True)
106
        for m in self.modules():
107
            if type(m) is QuantizableBottleneck or type(m) is QuantizableBasicBlock:
108
109
110
                m.fuse_model()


111
112
def _resnet(
    arch: str,
113
    block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]],
114
115
116
117
118
119
120
    layers: List[int],
    pretrained: bool,
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableResNet:

121
122
123
124
    model = QuantizableResNet(block, layers, **kwargs)
    _replace_relu(model)
    if quantize:
        # TODO use pretrained as a string to specify the backend
125
        backend = "fbgemm"
126
127
128
129
130
131
        quantize_model(model, backend)
    else:
        assert pretrained in [True, False]

    if pretrained:
        if quantize:
132
            model_url = quant_model_urls[arch + "_" + backend]
133
134
135
        else:
            model_url = model_urls[arch]

136
        state_dict = load_state_dict_from_url(model_url, progress=progress)
137
138
139
140
141

        model.load_state_dict(state_dict)
    return model


142
143
144
145
146
147
def resnet18(
    pretrained: bool = False,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableResNet:
148
149
150
151
152
153
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
154
        quantize (bool): If True, return a quantized version of the model
155
    """
156
    return _resnet("resnet18", QuantizableBasicBlock, [2, 2, 2, 2], pretrained, progress, quantize, **kwargs)
157
158


159
160
161
162
163
164
165
def resnet50(
    pretrained: bool = False,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableResNet:

166
167
168
169
170
171
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
172
        quantize (bool): If True, return a quantized version of the model
173
    """
174
    return _resnet("resnet50", QuantizableBottleneck, [3, 4, 6, 3], pretrained, progress, quantize, **kwargs)
175
176


177
178
179
180
181
182
def resnext101_32x8d(
    pretrained: bool = False,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableResNet:
183
184
185
186
187
188
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
189
        quantize (bool): If True, return a quantized version of the model
190
    """
191
192
193
    kwargs["groups"] = 32
    kwargs["width_per_group"] = 8
    return _resnet("resnext101_32x8d", QuantizableBottleneck, [3, 4, 23, 3], pretrained, progress, quantize, **kwargs)