resnet.py 6.07 KB
Newer Older
1
2
3
4
import torch
from torchvision.models.resnet import Bottleneck, BasicBlock, ResNet, model_urls
import torch.nn as nn
from torchvision.models.utils import load_state_dict_from_url
Aditya Oke's avatar
Aditya Oke committed
5
from torch.quantization import fuse_modules
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from .utils import _replace_relu, quantize_model

__all__ = ['QuantizableResNet', 'resnet18', 'resnet50',
           'resnext101_32x8d']


quant_model_urls = {
    'resnet18_fbgemm':
        'https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth',
    'resnet50_fbgemm':
        'https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth',
    'resnext101_32x8d_fbgemm':
        'https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth',
}


class QuantizableBasicBlock(BasicBlock):
    def __init__(self, *args, **kwargs):
        super(QuantizableBasicBlock, self).__init__(*args, **kwargs)
        self.add_relu = torch.nn.quantized.FloatFunctional()

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.add_relu.add_relu(out, identity)

        return out

    def fuse_model(self):
        torch.quantization.fuse_modules(self, [['conv1', 'bn1', 'relu'],
                                               ['conv2', 'bn2']], inplace=True)
        if self.downsample:
            torch.quantization.fuse_modules(self.downsample, ['0', '1'], inplace=True)


class QuantizableBottleneck(Bottleneck):
    def __init__(self, *args, **kwargs):
        super(QuantizableBottleneck, self).__init__(*args, **kwargs)
        self.skip_add_relu = nn.quantized.FloatFunctional()
        self.relu1 = nn.ReLU(inplace=False)
        self.relu2 = nn.ReLU(inplace=False)

    def forward(self, x):
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu2(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)
        out = self.skip_add_relu.add_relu(out, identity)

        return out

    def fuse_model(self):
        fuse_modules(self, [['conv1', 'bn1', 'relu1'],
                            ['conv2', 'bn2', 'relu2'],
                            ['conv3', 'bn3']], inplace=True)
        if self.downsample:
            torch.quantization.fuse_modules(self.downsample, ['0', '1'], inplace=True)


class QuantizableResNet(ResNet):

    def __init__(self, *args, **kwargs):
        super(QuantizableResNet, self).__init__(*args, **kwargs)

        self.quant = torch.quantization.QuantStub()
        self.dequant = torch.quantization.DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        # Ensure scriptability
        # super(QuantizableResNet,self).forward(x)
        # is not scriptable
97
        x = self._forward_impl(x)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        x = self.dequant(x)
        return x

    def fuse_model(self):
        r"""Fuse conv/bn/relu modules in resnet models

        Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """

        fuse_modules(self, ['conv1', 'bn1', 'relu'], inplace=True)
        for m in self.modules():
            if type(m) == QuantizableBottleneck or type(m) == QuantizableBasicBlock:
                m.fuse_model()


def _resnet(arch, block, layers, pretrained, progress, quantize, **kwargs):
    model = QuantizableResNet(block, layers, **kwargs)
    _replace_relu(model)
    if quantize:
        # TODO use pretrained as a string to specify the backend
        backend = 'fbgemm'
        quantize_model(model, backend)
    else:
        assert pretrained in [True, False]

    if pretrained:
        if quantize:
            model_url = quant_model_urls[arch + '_' + backend]
        else:
            model_url = model_urls[arch]

        state_dict = load_state_dict_from_url(model_url,
                                              progress=progress)

        model.load_state_dict(state_dict)
    return model


def resnet18(pretrained=False, progress=True, quantize=False, **kwargs):
    r"""ResNet-18 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
145
        quantize (bool): If True, return a quantized version of the model
146
147
148
149
150
151
152
153
154
155
156
157
    """
    return _resnet('resnet18', QuantizableBasicBlock, [2, 2, 2, 2], pretrained, progress,
                   quantize, **kwargs)


def resnet50(pretrained=False, progress=True, quantize=False, **kwargs):
    r"""ResNet-50 model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
158
        quantize (bool): If True, return a quantized version of the model
159
160
161
162
163
164
165
166
167
168
169
170
    """
    return _resnet('resnet50', QuantizableBottleneck, [3, 4, 6, 3], pretrained, progress,
                   quantize, **kwargs)


def resnext101_32x8d(pretrained=False, progress=True, quantize=False, **kwargs):
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
171
        quantize (bool): If True, return a quantized version of the model
172
173
174
175
176
    """
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', QuantizableBottleneck, [3, 4, 23, 3],
                   pretrained, progress, quantize, **kwargs)