backbone_utils.py 8.77 KB
Newer Older
1
import warnings
2
from typing import Callable, Dict, Optional, List, Union
3

4
from torch import nn, Tensor
5
from torchvision.ops import misc as misc_nn_ops
6
from torchvision.ops.feature_pyramid_network import FeaturePyramidNetwork, LastLevelMaxPool, ExtraFPNBlock
7

8
from .. import mobilenet
9
from .. import resnet
10
from .._utils import IntermediateLayerGetter
11
12


eellison's avatar
eellison committed
13
class BackboneWithFPN(nn.Module):
14
15
16
17
    """
    Adds a FPN on top of a model.
    Internally, it uses torchvision.models._utils.IntermediateLayerGetter to
    extract a submodel that returns the feature maps specified in return_layers.
18
    The same limitations of IntermediateLayerGetter apply here.
19
    Args:
20
21
22
23
24
25
26
27
28
29
30
        backbone (nn.Module)
        return_layers (Dict[name, new_name]): a dict containing the names
            of the modules for which the activations will be returned as
            the key of the dict, and the value of the dict is the name
            of the returned activation (which the user can specify).
        in_channels_list (List[int]): number of channels for each feature map
            that is returned, in the order they are present in the OrderedDict
        out_channels (int): number of channels in the FPN.
    Attributes:
        out_channels (int): the number of channels in the FPN
    """
31

32
33
34
35
36
37
38
39
    def __init__(
        self,
        backbone: nn.Module,
        return_layers: Dict[str, str],
        in_channels_list: List[int],
        out_channels: int,
        extra_blocks: Optional[ExtraFPNBlock] = None,
    ) -> None:
40
        super().__init__()
41
42
43
44

        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

eellison's avatar
eellison committed
45
46
        self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
        self.fpn = FeaturePyramidNetwork(
47
48
            in_channels_list=in_channels_list,
            out_channels=out_channels,
49
            extra_blocks=extra_blocks,
50
51
52
        )
        self.out_channels = out_channels

53
    def forward(self, x: Tensor) -> Dict[str, Tensor]:
eellison's avatar
eellison committed
54
55
56
57
        x = self.body(x)
        x = self.fpn(x)
        return x

58

59
def resnet_fpn_backbone(
60
61
62
63
64
65
66
    backbone_name: str,
    pretrained: bool,
    norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers: int = 3,
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> BackboneWithFPN:
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    """
    Constructs a specified ResNet backbone with FPN on top. Freezes the specified number of layers in the backbone.

    Examples::

        >>> from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
        >>> backbone = resnet_fpn_backbone('resnet50', pretrained=True, trainable_layers=3)
        >>> # get some dummy image
        >>> x = torch.rand(1,3,64,64)
        >>> # compute the output
        >>> output = backbone(x)
        >>> print([(k, v.shape) for k, v in output.items()])
        >>> # returns
        >>>   [('0', torch.Size([1, 256, 16, 16])),
        >>>    ('1', torch.Size([1, 256, 8, 8])),
        >>>    ('2', torch.Size([1, 256, 4, 4])),
        >>>    ('3', torch.Size([1, 256, 2, 2])),
        >>>    ('pool', torch.Size([1, 256, 1, 1]))]

86
    Args:
87
88
        backbone_name (string): resnet architecture. Possible values are 'ResNet', 'resnet18', 'resnet34', 'resnet50',
             'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
89
        pretrained (bool): If True, returns a model with backbone pre-trained on Imagenet
90
        norm_layer (callable): it is recommended to use the default value. For details visit:
91
92
93
            (https://github.com/facebookresearch/maskrcnn-benchmark/issues/267)
        trainable_layers (int): number of trainable (not frozen) resnet layers starting from final block.
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable.
94
95
96
97
98
99
100
        returned_layers (list of int): The layers of the network to return. Each entry must be in ``[1, 4]``.
            By default all layers are returned.
        extra_blocks (ExtraFPNBlock or None): if provided, extra operations will
            be performed. It is expected to take the fpn features, the original
            features and the names of the original features as input, and returns
            a new list of feature maps and their corresponding names. By
            default a ``LastLevelMaxPool`` is used.
101
    """
102
    backbone = resnet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer)
103
    return _resnet_fpn_extractor(backbone, trainable_layers, returned_layers, extra_blocks)
104

105

106
def _resnet_fpn_extractor(
107
108
    backbone: resnet.ResNet,
    trainable_layers: int,
109
110
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
111
112
) -> BackboneWithFPN:

113
    # select layers that wont be frozen
114
    assert 0 <= trainable_layers <= 5
115
    layers_to_train = ["layer4", "layer3", "layer2", "layer1", "conv1"][:trainable_layers]
116
    if trainable_layers == 5:
117
        layers_to_train.append("bn1")
118
    for name, parameter in backbone.named_parameters():
119
        if all([not name.startswith(layer) for layer in layers_to_train]):
120
121
            parameter.requires_grad_(False)

122
123
124
125
126
127
    if extra_blocks is None:
        extra_blocks = LastLevelMaxPool()

    if returned_layers is None:
        returned_layers = [1, 2, 3, 4]
    assert min(returned_layers) > 0 and max(returned_layers) < 5
128
    return_layers = {f"layer{k}": str(v) for v, k in enumerate(returned_layers)}
129

130
    in_channels_stage2 = backbone.inplanes // 8
131
    in_channels_list = [in_channels_stage2 * 2 ** (i - 1) for i in returned_layers]
132
    out_channels = 256
133
    return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
134
135


136
137
138
139
140
141
142
def _validate_trainable_layers(
    pretrained: bool,
    trainable_backbone_layers: Optional[int],
    max_value: int,
    default_value: int,
) -> int:
    # don't freeze any layers if pretrained model or backbone is not used
143
144
145
146
147
    if not pretrained:
        if trainable_backbone_layers is not None:
            warnings.warn(
                "Changing trainable_backbone_layers has not effect if "
                "neither pretrained nor pretrained_backbone have been set to True, "
148
                f"falling back to trainable_backbone_layers={max_value} so that all layers are trainable"
149
            )
150
151
152
        trainable_backbone_layers = max_value

    # by default freeze first blocks
153
    if trainable_backbone_layers is None:
154
155
        trainable_backbone_layers = default_value
    assert 0 <= trainable_backbone_layers <= max_value
156
    return trainable_backbone_layers
157
158
159


def mobilenet_backbone(
160
161
162
163
164
165
166
167
    backbone_name: str,
    pretrained: bool,
    fpn: bool,
    norm_layer: Callable[..., nn.Module] = misc_nn_ops.FrozenBatchNorm2d,
    trainable_layers: int = 2,
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> nn.Module:
168
169
    backbone = mobilenet.__dict__[backbone_name](pretrained=pretrained, norm_layer=norm_layer)
    return _mobilenet_extractor(backbone, fpn, trainable_layers, returned_layers, extra_blocks)
170

171

172
173
174
175
176
177
178
179
def _mobilenet_extractor(
    backbone: Union[mobilenet.MobileNetV2, mobilenet.MobileNetV3],
    fpn: bool,
    trainable_layers,
    returned_layers: Optional[List[int]] = None,
    extra_blocks: Optional[ExtraFPNBlock] = None,
) -> nn.Module:
    backbone = backbone.features
180
    # Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
181
    # The first and last blocks are always included because they are the C0 (conv1) and Cn.
182
    stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
183
184
185
186
    num_stages = len(stage_indices)

    # find the index of the layer from which we wont freeze
    assert 0 <= trainable_layers <= num_stages
187
    freeze_before = len(backbone) if trainable_layers == 0 else stage_indices[num_stages - trainable_layers]
188
189
190
191
192
193
194
195
196
197
198
199
200

    for b in backbone[:freeze_before]:
        for parameter in b.parameters():
            parameter.requires_grad_(False)

    out_channels = 256
    if fpn:
        if extra_blocks is None:
            extra_blocks = LastLevelMaxPool()

        if returned_layers is None:
            returned_layers = [num_stages - 2, num_stages - 1]
        assert min(returned_layers) >= 0 and max(returned_layers) < num_stages
201
        return_layers = {f"{stage_indices[k]}": str(v) for v, k in enumerate(returned_layers)}
202
203
204
205
206
207
208
209
210

        in_channels_list = [backbone[stage_indices[i]].out_channels for i in returned_layers]
        return BackboneWithFPN(backbone, return_layers, in_channels_list, out_channels, extra_blocks=extra_blocks)
    else:
        m = nn.Sequential(
            backbone,
            # depthwise linear combination of channels to reduce their size
            nn.Conv2d(backbone[-1].out_channels, out_channels, 1),
        )
211
        m.out_channels = out_channels  # type: ignore[assignment]
212
        return m