cifar.py 5.72 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
import os
import os.path
3
import pickle
Philip Meier's avatar
Philip Meier committed
4
from typing import Any, Callable, Optional, Tuple
Soumith Chintala's avatar
Soumith Chintala committed
5

6
7
8
import numpy as np
from PIL import Image

9
from .utils import check_integrity, download_and_extract_archive
10
from .vision import VisionDataset
11

12

13
class CIFAR10(VisionDataset):
14
15
16
17
    """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    Args:
        root (string): Root directory of dataset where directory
18
            ``cifar-10-batches-py`` exists or will be saved to if download is set to True.
19
20
        train (bool, optional): If True, creates dataset from training set, otherwise
            creates from test set.
Tongzhou Wang's avatar
Tongzhou Wang committed
21
        transform (callable, optional): A function/transform that takes in an PIL image
22
23
24
25
26
27
28
29
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """
30
31

    base_folder = "cifar-10-batches-py"
Tzu-Wei Huang's avatar
Tzu-Wei Huang committed
32
    url = "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
Soumith Chintala's avatar
Soumith Chintala committed
33
    filename = "cifar-10-python.tar.gz"
34
    tgz_md5 = "c58f30108f718f92721af3b95e74349a"
Soumith Chintala's avatar
Soumith Chintala committed
35
    train_list = [
36
37
38
39
40
        ["data_batch_1", "c99cafc152244af753f735de768cd75f"],
        ["data_batch_2", "d4bba439e000b95fd0a9bffe97cbabec"],
        ["data_batch_3", "54ebc095f3ab1f0389bbae665268c751"],
        ["data_batch_4", "634d18415352ddfa80567beed471001a"],
        ["data_batch_5", "482c414d41f54cd18b22e5b47cb7c3cb"],
Soumith Chintala's avatar
Soumith Chintala committed
41
42
43
    ]

    test_list = [
44
        ["test_batch", "40351d587109b95175f43aff81a1287e"],
Soumith Chintala's avatar
Soumith Chintala committed
45
    ]
46
    meta = {
47
48
49
        "filename": "batches.meta",
        "key": "label_names",
        "md5": "5ff9c542aee3614f3951f8cda6e48888",
50
51
    }

Philip Meier's avatar
Philip Meier committed
52
    def __init__(
53
54
55
56
57
58
        self,
        root: str,
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
Philip Meier's avatar
Philip Meier committed
59
    ) -> None:
60

61
        super().__init__(root, transform=transform, target_transform=target_transform)
62

63
64
        self.train = train  # training set or test set

Soumith Chintala's avatar
Soumith Chintala committed
65
66
67
68
        if download:
            self.download()

        if not self._check_integrity():
69
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
70

71
        if self.train:
72
73
74
75
            downloaded_list = self.train_list
        else:
            downloaded_list = self.test_list

Philip Meier's avatar
Philip Meier committed
76
        self.data: Any = []
77
78
79
80
81
        self.targets = []

        # now load the picked numpy arrays
        for file_name, checksum in downloaded_list:
            file_path = os.path.join(self.root, self.base_folder, file_name)
82
83
84
85
86
            with open(file_path, "rb") as f:
                entry = pickle.load(f, encoding="latin1")
                self.data.append(entry["data"])
                if "labels" in entry:
                    self.targets.extend(entry["labels"])
87
                else:
88
                    self.targets.extend(entry["fine_labels"])
89

90
91
        self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
        self.data = self.data.transpose((0, 2, 3, 1))  # convert to HWC
Soumith Chintala's avatar
Soumith Chintala committed
92

93
94
        self._load_meta()

Philip Meier's avatar
Philip Meier committed
95
    def _load_meta(self) -> None:
96
97
        path = os.path.join(self.root, self.base_folder, self.meta["filename"])
        if not check_integrity(path, self.meta["md5"]):
98
            raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
99
100
101
        with open(path, "rb") as infile:
            data = pickle.load(infile, encoding="latin1")
            self.classes = data[self.meta["key"]]
102
103
        self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}

Philip Meier's avatar
Philip Meier committed
104
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
105
106
107
108
109
110
111
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
112
        img, target = self.data[index], self.targets[index]
113

114
115
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
116
        img = Image.fromarray(img)
Soumith Chintala's avatar
Soumith Chintala committed
117
118
119
120
121
122
123
124
125

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

Philip Meier's avatar
Philip Meier committed
126
    def __len__(self) -> int:
127
        return len(self.data)
Soumith Chintala's avatar
Soumith Chintala committed
128

Philip Meier's avatar
Philip Meier committed
129
    def _check_integrity(self) -> bool:
Soumith Chintala's avatar
Soumith Chintala committed
130
        root = self.root
131
        for fentry in self.train_list + self.test_list:
Soumith Chintala's avatar
Soumith Chintala committed
132
133
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
soumith's avatar
soumith committed
134
            if not check_integrity(fpath, md5):
Soumith Chintala's avatar
Soumith Chintala committed
135
136
137
                return False
        return True

Philip Meier's avatar
Philip Meier committed
138
    def download(self) -> None:
Soumith Chintala's avatar
Soumith Chintala committed
139
        if self._check_integrity():
140
            print("Files already downloaded and verified")
Soumith Chintala's avatar
Soumith Chintala committed
141
            return
142
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)
Soumith Chintala's avatar
Soumith Chintala committed
143

Philip Meier's avatar
Philip Meier committed
144
    def extra_repr(self) -> str:
145
146
        split = "Train" if self.train is True else "Test"
        return f"Split: {split}"
147

Soumith Chintala's avatar
Soumith Chintala committed
148
149

class CIFAR100(CIFAR10):
jvmancuso's avatar
jvmancuso committed
150
151
152
153
    """`CIFAR100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset.

    This is a subclass of the `CIFAR10` Dataset.
    """
154
155

    base_folder = "cifar-100-python"
Tzu-Wei Huang's avatar
Tzu-Wei Huang committed
156
    url = "https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
Soumith Chintala's avatar
Soumith Chintala committed
157
    filename = "cifar-100-python.tar.gz"
158
    tgz_md5 = "eb9058c3a382ffc7106e4002c42a8d85"
Soumith Chintala's avatar
Soumith Chintala committed
159
    train_list = [
160
        ["train", "16019d7e3df5f24257cddd939b257f8d"],
Soumith Chintala's avatar
Soumith Chintala committed
161
162
163
    ]

    test_list = [
164
        ["test", "f0ef6b0ae62326f3e7ffdfab6717acfc"],
Soumith Chintala's avatar
Soumith Chintala committed
165
    ]
166
    meta = {
167
168
169
        "filename": "meta",
        "key": "fine_label_names",
        "md5": "7973b15100ade9c7d40fb424638fde48",
170
    }