cifar.py 4.86 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import sys
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

14
15
import .utils as utils

16

Soumith Chintala's avatar
Soumith Chintala committed
17
18
19
20
class CIFAR10(data.Dataset):
    base_folder = 'cifar-10-batches-py'
    url = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
    filename = "cifar-10-python.tar.gz"
zhoumingjun's avatar
zhoumingjun committed
21
    tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
Soumith Chintala's avatar
Soumith Chintala committed
22
    train_list = [
23
24
25
26
27
        ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
        ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
        ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
        ['data_batch_4', '634d18415352ddfa80567beed471001a'],
        ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
Soumith Chintala's avatar
Soumith Chintala committed
28
29
30
    ]

    test_list = [
31
        ['test_batch', '40351d587109b95175f43aff81a1287e'],
Soumith Chintala's avatar
Soumith Chintala committed
32
33
    ]

34
35
36
    def __init__(self, root, train=True,
                 transform=None, target_transform=None,
                 download=False):
Soumith Chintala's avatar
Soumith Chintala committed
37
38
39
        self.root = root
        self.transform = transform
        self.target_transform = target_transform
40
41
        self.train = train  # training set or test set

Soumith Chintala's avatar
Soumith Chintala committed
42
43
44
45
        if download:
            self.download()

        if not self._check_integrity():
46
47
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')
48

Soumith Chintala's avatar
Soumith Chintala committed
49
        # now load the picked numpy arrays
50
51
52
53
54
55
56
        if self.train:
            self.train_data = []
            self.train_labels = []
            for fentry in self.train_list:
                f = fentry[0]
                file = os.path.join(root, self.base_folder, f)
                fo = open(file, 'rb')
Adam Lerer's avatar
Adam Lerer committed
57
58
59
60
                if sys.version_info[0] == 2:
                    entry = pickle.load(fo)
                else:
                    entry = pickle.load(fo, encoding='latin1')
61
62
63
64
65
66
67
68
69
                self.train_data.append(entry['data'])
                if 'labels' in entry:
                    self.train_labels += entry['labels']
                else:
                    self.train_labels += entry['fine_labels']
                fo.close()

            self.train_data = np.concatenate(self.train_data)
            self.train_data = self.train_data.reshape((50000, 3, 32, 32))
70
            self.train_data = self.train_data.transpose((0, 2, 3, 1))  # convert to HWC
71
72
        else:
            f = self.test_list[0][0]
Soumith Chintala's avatar
Soumith Chintala committed
73
74
            file = os.path.join(root, self.base_folder, f)
            fo = open(file, 'rb')
75
76
77
78
            if sys.version_info[0] == 2:
                entry = pickle.load(fo)
            else:
                entry = pickle.load(fo, encoding='latin1')
79
            self.test_data = entry['data']
Soumith Chintala's avatar
Soumith Chintala committed
80
            if 'labels' in entry:
81
                self.test_labels = entry['labels']
Soumith Chintala's avatar
Soumith Chintala committed
82
            else:
83
                self.test_labels = entry['fine_labels']
Soumith Chintala's avatar
Soumith Chintala committed
84
            fo.close()
85
            self.test_data = self.test_data.reshape((10000, 3, 32, 32))
86
            self.test_data = self.test_data.transpose((0, 2, 3, 1))  # convert to HWC
Soumith Chintala's avatar
Soumith Chintala committed
87
88
89
90
91
92

    def __getitem__(self, index):
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]
93

94
95
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
96
        img = Image.fromarray(img)
Soumith Chintala's avatar
Soumith Chintala committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return 50000
        else:
            return 10000

    def _check_integrity(self):
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
117
            if not utils.check_integrity(fpath, md5):
Soumith Chintala's avatar
Soumith Chintala committed
118
119
120
121
122
123
124
125
126
                return False
        return True

    def download(self):
        import tarfile

        if self._check_integrity():
            print('Files already downloaded and verified')
            return
127

128
129
130
131
        root = self.root

        # download
        utils.download(self.url, root, self.filename, self.tgz_md5)
Soumith Chintala's avatar
Soumith Chintala committed
132
133
134

        # extract file
        cwd = os.getcwd()
135
        tar = tarfile.open(os.path.join(root, self.filename), "r:gz")
136
        os.chdir(root)
Soumith Chintala's avatar
Soumith Chintala committed
137
138
139
140
141
142
143
144
145
146
147
        tar.extractall()
        tar.close()
        os.chdir(cwd)


class CIFAR100(CIFAR10):
    base_folder = 'cifar-100-python'
    url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
    filename = "cifar-100-python.tar.gz"
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
148
        ['train', '16019d7e3df5f24257cddd939b257f8d'],
Soumith Chintala's avatar
Soumith Chintala committed
149
150
151
    ]

    test_list = [
152
        ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
Soumith Chintala's avatar
Soumith Chintala committed
153
    ]