cifar.py 5.48 KB
Newer Older
Soumith Chintala's avatar
Soumith Chintala committed
1
2
3
4
5
6
7
8
9
10
11
12
13
from __future__ import print_function
import torch.utils.data as data
from PIL import Image
import os
import os.path
import errno
import numpy as np
import sys
if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle

14

Soumith Chintala's avatar
Soumith Chintala committed
15
16
17
18
class CIFAR10(data.Dataset):
    base_folder = 'cifar-10-batches-py'
    url = "http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz"
    filename = "cifar-10-python.tar.gz"
zhoumingjun's avatar
zhoumingjun committed
19
    tgz_md5 = 'c58f30108f718f92721af3b95e74349a'
Soumith Chintala's avatar
Soumith Chintala committed
20
    train_list = [
21
22
23
24
25
        ['data_batch_1', 'c99cafc152244af753f735de768cd75f'],
        ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'],
        ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'],
        ['data_batch_4', '634d18415352ddfa80567beed471001a'],
        ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'],
Soumith Chintala's avatar
Soumith Chintala committed
26
27
28
    ]

    test_list = [
29
        ['test_batch', '40351d587109b95175f43aff81a1287e'],
Soumith Chintala's avatar
Soumith Chintala committed
30
31
32
33
34
35
    ]

    def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
        self.root = root
        self.transform = transform
        self.target_transform = target_transform
36
37
        self.train = train  # training set or test set

Soumith Chintala's avatar
Soumith Chintala committed
38
39
40
41
        if download:
            self.download()

        if not self._check_integrity():
42
43
            raise RuntimeError('Dataset not found or corrupted.' +
                               ' You can use download=True to download it')
44

Soumith Chintala's avatar
Soumith Chintala committed
45
        # now load the picked numpy arrays
46
47
48
49
50
51
52
        if self.train:
            self.train_data = []
            self.train_labels = []
            for fentry in self.train_list:
                f = fentry[0]
                file = os.path.join(root, self.base_folder, f)
                fo = open(file, 'rb')
Adam Lerer's avatar
Adam Lerer committed
53
54
55
56
                if sys.version_info[0] == 2:
                    entry = pickle.load(fo)
                else:
                    entry = pickle.load(fo, encoding='latin1')
57
58
59
60
61
62
63
64
65
                self.train_data.append(entry['data'])
                if 'labels' in entry:
                    self.train_labels += entry['labels']
                else:
                    self.train_labels += entry['fine_labels']
                fo.close()

            self.train_data = np.concatenate(self.train_data)
            self.train_data = self.train_data.reshape((50000, 3, 32, 32))
66
            self.train_data = self.train_data.transpose((0, 2, 3, 1))  # convert to HWC
67
68
        else:
            f = self.test_list[0][0]
Soumith Chintala's avatar
Soumith Chintala committed
69
70
            file = os.path.join(root, self.base_folder, f)
            fo = open(file, 'rb')
71
72
73
74
            if sys.version_info[0] == 2:
                entry = pickle.load(fo)
            else:
                entry = pickle.load(fo, encoding='latin1')
75
            self.test_data = entry['data']
Soumith Chintala's avatar
Soumith Chintala committed
76
            if 'labels' in entry:
77
                self.test_labels = entry['labels']
Soumith Chintala's avatar
Soumith Chintala committed
78
            else:
79
                self.test_labels = entry['fine_labels']
Soumith Chintala's avatar
Soumith Chintala committed
80
            fo.close()
81
            self.test_data = self.test_data.reshape((10000, 3, 32, 32))
82
            self.test_data = self.test_data.transpose((0, 2, 3, 1))  # convert to HWC
Soumith Chintala's avatar
Soumith Chintala committed
83
84
85
86
87
88

    def __getitem__(self, index):
        if self.train:
            img, target = self.train_data[index], self.train_labels[index]
        else:
            img, target = self.test_data[index], self.test_labels[index]
89

90
91
        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
92
        img = Image.fromarray(img)
Soumith Chintala's avatar
Soumith Chintala committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self):
        if self.train:
            return 50000
        else:
            return 10000

    def _check_integrity(self):
        import hashlib
        root = self.root
        for fentry in (self.train_list + self.test_list):
            filename, md5 = fentry[0], fentry[1]
            fpath = os.path.join(root, self.base_folder, filename)
            if not os.path.isfile(fpath):
                return False
            md5c = hashlib.md5(open(fpath, 'rb').read()).hexdigest()
            if md5c != md5:
                return False
        return True

    def download(self):
        from six.moves import urllib
        import tarfile
        import hashlib

        root = self.root
        fpath = os.path.join(root, self.filename)

        try:
            os.makedirs(root)
        except OSError as e:
            if e.errno == errno.EEXIST:
                pass
            else:
                raise

        if self._check_integrity():
            print('Files already downloaded and verified')
            return
140

Soumith Chintala's avatar
Soumith Chintala committed
141
142
143
144
145
146
147
148
149
150
151
152
        # downloads file
        if os.path.isfile(fpath) and \
           hashlib.md5(open(fpath, 'rb').read()).hexdigest() == self.tgz_md5:
            print('Using downloaded file: ' + fpath)
        else:
            print('Downloading ' + self.url + ' to ' + fpath)
            urllib.request.urlretrieve(self.url, fpath)

        # extract file
        cwd = os.getcwd()
        print('Extracting tar file')
        tar = tarfile.open(fpath, "r:gz")
153
        os.chdir(root)
Soumith Chintala's avatar
Soumith Chintala committed
154
155
156
157
158
159
160
161
162
163
164
165
        tar.extractall()
        tar.close()
        os.chdir(cwd)
        print('Done!')


class CIFAR100(CIFAR10):
    base_folder = 'cifar-100-python'
    url = "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz"
    filename = "cifar-100-python.tar.gz"
    tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85'
    train_list = [
166
        ['train', '16019d7e3df5f24257cddd939b257f8d'],
Soumith Chintala's avatar
Soumith Chintala committed
167
168
169
    ]

    test_list = [
170
        ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'],
Soumith Chintala's avatar
Soumith Chintala committed
171
    ]