test_transforms_tensor.py 31.2 KB
Newer Older
1
import os
2
3

import numpy as np
4
import pytest
5
import torch
Nicolas Hug's avatar
Nicolas Hug committed
6
7
8
9
10
11
12
13
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
14
    cpu_and_gpu,
15
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
16
)
17
18
19
from torchvision import transforms as T
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
20

21
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
22
23


24
25
26
27
28
29
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
30

31

32
33
34
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
35

36
37
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
38
        torch.manual_seed(12)
39
40
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
41

42
43
44
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
45
46


47
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
48
    fn_kwargs = fn_kwargs or {}
49

50
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
51
52
53
54
55
56
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
57
58


59
def _test_class_op(method, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
60
61
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
62

63
64
65
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
66

67
    tensor, pil_img = _create_data(26, 34, channels, device=device)
68
69
70
71
72
73
74
75
76
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
77

78
79
80
81
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

82
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
83
84
85
86
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
87

88

89
90
91
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
92
93


94
@pytest.mark.parametrize("device", cpu_and_gpu())
95
@pytest.mark.parametrize(
96
97
    "func,method,fn_kwargs,match_kwargs",
    [
98
99
100
101
102
103
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
104
105
106
107
108
109
110
111
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
112
)
113
@pytest.mark.parametrize("channels", [1, 3])
114
115
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
116

117

118
@pytest.mark.parametrize("seed", range(10))
119
120
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
121
class TestColorJitter:
122
123
124
125
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

126
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
127
    def test_color_jitter_brightness(self, brightness, device, channels):
128
129
130
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
131
132
133
134
135
136
137
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
138
139
        )

140
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
141
    def test_color_jitter_contrast(self, contrast, device, channels):
142
143
144
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
145
146
147
148
149
150
151
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
152
153
        )

154
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
155
    def test_color_jitter_saturation(self, saturation, device, channels):
156
157
158
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
159
160
161
162
163
164
165
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
166
167
        )

168
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
169
    def test_color_jitter_hue(self, hue, device, channels):
170
171
        meth_kwargs = {"hue": hue}
        _test_class_op(
172
173
174
175
176
177
178
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
179
180
        )

181
    def test_color_jitter_all(self, device, channels):
182
183
184
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
185
186
187
188
189
190
191
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
192
193
194
        )


195
196
197
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
198
199
200
201
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
202
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
203
    # Test functional.pad and transforms.Pad with padding as [int, ]
204
205
206
207
208
209
210
211
    fn_kwargs = meth_kwargs = {
        "padding": [
            mul * 2,
        ],
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
212
213
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
214
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
215
216
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
217
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
218
219


220
@pytest.mark.parametrize("device", cpu_and_gpu())
221
222
223
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
224
225
226
227
228
229
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "constant", "fill": 20},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        5,
        [
            5,
        ],
        [6, 6],
    ],
)
269
270
271
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
272
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
273
274


275
@pytest.mark.parametrize("device", cpu_and_gpu())
276
def test_center_crop(device, tmpdir):
277
    fn_kwargs = {"output_size": (4, 5)}
278
279
280
281
    meth_kwargs = {
        "size": (4, 5),
    }
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
282
    fn_kwargs = {"output_size": (5,)}
283
    meth_kwargs = {"size": (5,)}
284
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
285
286
287
288
289
290
291
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
292
293
294
295
296
    f = T.CenterCrop(
        size=[
            5,
        ]
    )
297
298
299
300
301
302
303
304
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

305
    scripted_fn.save(os.path.join(tmpdir, "t_center_crop.pt"))
306
307


308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        (5,),
        [
            5,
        ],
        (4, 5),
        [4, 5],
    ],
)
329
def test_x_crop(fn, method, out_length, size, device):
330
    meth_kwargs = fn_kwargs = {"size": size}
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


366
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
367
def test_x_crop_save(method, tmpdir):
368
369
370
371
372
    fn = getattr(T, method)(
        size=[
            5,
        ]
    )
373
    scripted_fn = torch.jit.script(fn)
374
    scripted_fn.save(os.path.join(tmpdir, f"t_op_list_{method}.pt"))
375
376
377


class TestResize:
378
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
379
380
381
382
383
384
385
386
387
388
389
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
    @pytest.mark.parametrize(
        "size",
        [
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [34, 35],
        ],
    )
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.xfail("with max_size, size must be a sequence with 2 elements")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

420
    def test_resize_save(self, tmpdir):
421
422
423
424
425
        transform = T.Resize(
            size=[
                32,
            ]
        )
426
        s_transform = torch.jit.script(transform)
427
        s_transform.save(os.path.join(tmpdir, "t_resize.pt"))
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize(
        "size",
        [
            (32,),
            [
                44,
            ],
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [44, 55],
        ],
    )
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
448
449
450
451
452
453
454
455
    def test_resized_crop(self, scale, ratio, size, interpolation, device):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(size=size, scale=scale, ratio=ratio, interpolation=interpolation)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

456
    def test_resized_crop_save(self, tmpdir):
457
458
459
460
461
        transform = T.RandomResizedCrop(
            size=[
                32,
            ]
        )
462
        s_transform = torch.jit.script(transform)
463
        s_transform.save(os.path.join(tmpdir, "t_resized_crop.pt"))
464
465


466
467
468
469
470
471
472
473
474
475
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


476
@pytest.mark.parametrize("device", cpu_and_gpu())
477
def test_random_affine(device, tmpdir):
478
479
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
480
    s_transform.save(os.path.join(tmpdir, "t_random_affine.pt"))
481
482


483
484
485
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
486
487
488
489
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


490
491
492
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
493
494
495
496
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


497
498
499
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
500
501
502
503
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


504
505
506
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
507
508
509
510
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
526
527
528
529
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
548
549
550
551
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

552
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
553
554
555
556
557
558
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


559
def test_random_rotate_save(tmpdir):
560
561
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
562
    s_transform.save(os.path.join(tmpdir, "t_random_rotate.pt"))
563
564


565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
581
582
583
584
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

585
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
586
587
588
589
590
591
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


592
def test_random_perspective_save(tmpdir):
593
594
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
595
    s_transform.save(os.path.join(tmpdir, "t_perspective.pt"))
596
597


598
599
600
601
602
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
603
604
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
605
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
606
607


608
609
610
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
611
612
613
614
615
616
617
618
619
620
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

621
622
623
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
624
625
626
627
628
629
630
631
632
633
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


634
def test_convert_image_dtype_save(tmpdir):
635
636
    fn = T.ConvertImageDtype(dtype=torch.uint8)
    scripted_fn = torch.jit.script(fn)
637
    scripted_fn.save(os.path.join(tmpdir, "t_convert_dtype.pt"))
638
639


640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
656
657
658
659
660
661
662
663
664
665
666
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
684
685
686
687
688
689
690
691
692
693
694
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
710
711
712
713
714
715
716
717
718
719
720
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


721
@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide])
722
723
def test_autoaugment_save(augmentation, tmpdir):
    transform = augmentation()
724
    s_transform = torch.jit.script(transform)
725
    s_transform.save(os.path.join(tmpdir, "t_autoaugment.pt"))
726
727


728
@pytest.mark.parametrize("device", cpu_and_gpu())
729
@pytest.mark.parametrize(
730
731
    "config",
    [{"value": 0.2}, {"value": "random"}, {"value": (0.2, 0.2, 0.2)}, {"value": "random", "ratio": (0.1, 0.2)}],
732
733
734
735
736
737
738
739
740
741
742
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


743
def test_random_erasing_save(tmpdir):
744
745
    fn = T.RandomErasing(value=0.2)
    scripted_fn = torch.jit.script(fn)
746
    scripted_fn.save(os.path.join(tmpdir, "t_random_erasing.pt"))
747
748
749
750
751
752
753
754
755
756


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


757
@pytest.mark.parametrize("device", cpu_and_gpu())
758
def test_normalize(device, tmpdir):
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

773
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
774
775


776
@pytest.mark.parametrize("device", cpu_and_gpu())
777
def test_linear_transformation(device, tmpdir):
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

799
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
800
801


802
@pytest.mark.parametrize("device", cpu_and_gpu())
803
804
805
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
806
807
808
809
810
811
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
812
813
814
815
816
817
818
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
819
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
820

821
822
823
824
825
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
826
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
827
828
829
        torch.jit.script(t)


830
@pytest.mark.parametrize("device", cpu_and_gpu())
831
832
833
834
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
851
852
853
854
855
856

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
857
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
858
859
860
861

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
862
863
864
865
866
867
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
868
869
870
871
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


872
873
874
875
876
877
878
879
880
881
882
883
884
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
885
def test_gaussian_blur(device, channels, meth_kwargs):
886
    tol = 1.0 + 1e-10
887
    torch.manual_seed(12)
888
    _test_class_op(
889
890
891
892
893
894
895
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
896
    )