video_utils.py 15.4 KB
Newer Older
1
2
import bisect
import math
3
import warnings
4
from fractions import Fraction
5
from typing import List
6

7
import torch
8
from torchvision.io import (
9
    _probe_video_from_file,
10
    _read_video_from_file,
11
12
13
    _read_video_timestamps_from_file,
    read_video,
    read_video_timestamps,
14
)
15

16
17
from .utils import tqdm

18

19
20
21
22
23
24
25
26
27
28
29
30
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


50
class _VideoTimestampsDataset(object):
51
    """
52
53
54
55
56
    Dataset used to parallelize the reading of the timestamps
    of a list of videos, given their paths in the filesystem.

    Used in VideoClips and defined at top level so it can be
    pickled when forking.
57
    """
58

59
60
    def __init__(self, video_paths: List[str]):
        self.video_paths = video_paths
61
62

    def __len__(self):
63
        return len(self.video_paths)
64
65

    def __getitem__(self, idx):
66
        return read_video_timestamps(self.video_paths[idx])
67
68


69
70
71
72
73
74
75
def _collate_fn(x):
    """
    Dummy collate function to be used with _VideoTimestampsDataset
    """
    return x


76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
98
99
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
100
    """
101
102
103
104
105
106
107
108
109
110
111
112

    def __init__(
        self,
        video_paths,
        clip_length_in_frames=16,
        frames_between_clips=1,
        frame_rate=None,
        _precomputed_metadata=None,
        num_workers=0,
        _video_width=0,
        _video_height=0,
        _video_min_dimension=0,
113
        _video_max_dimension=0,
114
115
116
        _audio_samples=0,
        _audio_channels=0,
    ):
117

118
        self.video_paths = video_paths
119
        self.num_workers = num_workers
120
121

        # these options are not valid for pyav backend
122
123
124
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
125
        self._video_max_dimension = _video_max_dimension
126
        self._audio_samples = _audio_samples
127
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
128

129
130
131
132
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
133
134
135
136
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

    def _compute_frame_pts(self):
        self.video_pts = []
137
        self.video_fps = []
138
139
140
141

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
142

143
        dl = torch.utils.data.DataLoader(
144
            _VideoTimestampsDataset(self.video_paths),
145
            batch_size=16,
146
            num_workers=self.num_workers,
147
            collate_fn=_collate_fn,
148
        )
149
150
151
152

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
153
                clips, fps = list(zip(*batch))
154
155
156
157
                # we need to specify dtype=torch.long because for empty list,
                # torch.as_tensor will use torch.float as default dtype. This
                # happens when decoding fails and no pts is returned in the list.
                clips = [torch.as_tensor(c, dtype=torch.long) for c in clips]
158
159
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
160

161
    def _init_from_metadata(self, metadata):
162
        self.video_paths = metadata["video_paths"]
163
164
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
165
166
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
167
168
169
170
171
172

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
173
            "video_fps": self.video_fps,
174
        }
175
        return _metadata
176
177
178
179

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
180
        video_fps = [self.video_fps[i] for i in indices]
181
        metadata = {
182
            "video_paths": video_paths,
183
            "video_pts": video_pts,
184
            "video_fps": video_fps,
185
        }
186
187
188
189
190
191
192
193
194
195
        return type(self)(
            video_paths,
            self.num_frames,
            self.step,
            self.frame_rate,
            _precomputed_metadata=metadata,
            num_workers=self.num_workers,
            _video_width=self._video_width,
            _video_height=self._video_height,
            _video_min_dimension=self._video_min_dimension,
196
            _video_max_dimension=self._video_max_dimension,
197
198
199
            _audio_samples=self._audio_samples,
            _audio_channels=self._audio_channels,
        )
200

201
202
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
203
204
205
206
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
207
208
209
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
210
211
212
        idxs = VideoClips._resample_video_idx(
            int(math.floor(total_frames)), fps, frame_rate
        )
213
214
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
215
216
217
        if not clips.numel():
            warnings.warn("There aren't enough frames in the current video to get a clip for the given clip length and "
                          "frames between clips. The video (and potentially others) will be skipped.")
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
239
        for video_pts, fps in zip(self.video_pts, self.video_fps):
240
241
242
            clips, idxs = self.compute_clips_for_video(
                video_pts, num_frames, step, fps, frame_rate
            )
243
244
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
298
299
300
301
            raise IndexError(
                "Index {} out of range "
                "({} number of clips)".format(idx, self.num_clips())
            )
302
303
304
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
305

306
        from torchvision import get_video_backend
307

308
309
310
311
312
313
314
315
316
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
317
318
319
                raise ValueError(
                    "pyav backend doesn't support _video_min_dimension != 0"
                )
320
321
322
323
            if self._video_max_dimension != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_max_dimension != 0"
                )
324
325
326
327
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
328
329
330
331
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
332
            info = _probe_video_from_file(video_path)
333
            video_fps = info.video_fps
334
            audio_fps = None
335
336
337
338
339
340

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
341
342
343
344
345
346
347
            video_timebase = Fraction(
                info.video_timebase.numerator, info.video_timebase.denominator
            )
            if info.has_audio:
                audio_timebase = Fraction(
                    info.audio_timebase.numerator, info.audio_timebase.denominator
                )
348
                audio_start_pts = pts_convert(
349
                    video_start_pts, video_timebase, audio_timebase, math.floor
350
351
                )
                audio_end_pts = pts_convert(
352
                    video_end_pts, video_timebase, audio_timebase, math.ceil
353
                )
354
                audio_fps = info.audio_sample_rate
355
356
            video, audio, info = _read_video_from_file(
                video_path,
357
358
359
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
360
                video_max_dimension=self._video_max_dimension,
361
                video_pts_range=(video_start_pts, video_end_pts),
362
                video_timebase=video_timebase,
363
                audio_samples=self._audio_samples,
364
                audio_channels=self._audio_channels,
365
366
367
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
368
369
370
371
372

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

373
374
375
376
377
378
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
379
380
381
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames
        )
382
        return video, audio, info, video_idx
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

    def __getstate__(self):
        video_pts_sizes = [len(v) for v in self.video_pts]
        # To be back-compatible, we convert data to dtype torch.long as needed
        # because for empty list, in legacy implementation, torch.as_tensor will
        # use torch.float as default dtype. This happens when decoding fails and
        # no pts is returned in the list.
        video_pts = [x.to(torch.int64) for x in self.video_pts]
        # video_pts can be an empty list if no frames have been decoded
        if video_pts:
            video_pts = torch.cat(video_pts)
            # avoid bug in https://github.com/pytorch/pytorch/issues/32351
            # TODO: Revert it once the bug is fixed.
            video_pts = video_pts.numpy()

        # make a copy of the fields of self
        d = self.__dict__.copy()
        d["video_pts_sizes"] = video_pts_sizes
        d["video_pts"] = video_pts
        # delete the following attributes to reduce the size of dictionary. They
        # will be re-computed in "__setstate__()"
        del d["clips"]
        del d["resampling_idxs"]
        del d["cumulative_sizes"]

        # for backwards-compatibility
        d["_version"] = 2
        return d

    def __setstate__(self, d):
        # for backwards-compatibility
        if "_version" not in d:
            self.__dict__ = d
            return

        video_pts = torch.as_tensor(d["video_pts"], dtype=torch.int64)
        video_pts = torch.split(video_pts, d["video_pts_sizes"], dim=0)
        # don't need this info anymore
        del d["video_pts_sizes"]

        d["video_pts"] = video_pts
        self.__dict__ = d
        # recompute attributes "clips", "resampling_idxs" and other derivative ones
        self.compute_clips(self.num_frames, self.step, self.frame_rate)