video_utils.py 13.4 KB
Newer Older
1
2
import bisect
import math
3
import warnings
4
from fractions import Fraction
5
from typing import List
6

7
import torch
8
from torchvision.io import (
9
    _probe_video_from_file,
10
    _read_video_from_file,
11
12
13
    _read_video_timestamps_from_file,
    read_video,
    read_video_timestamps,
14
)
15

16
17
from .utils import tqdm

18

19
20
21
22
23
24
25
26
27
28
29
30
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


50
class _VideoTimestampsDataset(object):
51
    """
52
53
54
55
56
    Dataset used to parallelize the reading of the timestamps
    of a list of videos, given their paths in the filesystem.

    Used in VideoClips and defined at top level so it can be
    pickled when forking.
57
    """
58

59
60
    def __init__(self, video_paths: List[str]):
        self.video_paths = video_paths
61
62

    def __len__(self):
63
        return len(self.video_paths)
64
65

    def __getitem__(self, idx):
66
        return read_video_timestamps(self.video_paths[idx])
67
68


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
91
92
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
93
    """
94
95
96
97
98
99
100
101
102
103
104
105

    def __init__(
        self,
        video_paths,
        clip_length_in_frames=16,
        frames_between_clips=1,
        frame_rate=None,
        _precomputed_metadata=None,
        num_workers=0,
        _video_width=0,
        _video_height=0,
        _video_min_dimension=0,
106
        _video_max_dimension=0,
107
108
109
        _audio_samples=0,
        _audio_channels=0,
    ):
110

111
        self.video_paths = video_paths
112
        self.num_workers = num_workers
113
114

        # these options are not valid for pyav backend
115
116
117
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
118
        self._video_max_dimension = _video_max_dimension
119
        self._audio_samples = _audio_samples
120
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
121

122
123
124
125
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
126
127
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

128
129
130
    def _collate_fn(self, x):
        return x

131
132
    def _compute_frame_pts(self):
        self.video_pts = []
133
        self.video_fps = []
134
135
136
137

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
138

139
        dl = torch.utils.data.DataLoader(
140
            _VideoTimestampsDataset(self.video_paths),
141
            batch_size=16,
142
            num_workers=self.num_workers,
143
144
            collate_fn=self._collate_fn,
        )
145
146
147
148

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
149
150
151
152
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
153

154
    def _init_from_metadata(self, metadata):
155
        self.video_paths = metadata["video_paths"]
156
157
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
158
159
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
160
161
162
163
164
165

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
166
            "video_fps": self.video_fps,
167
        }
168
        return _metadata
169
170
171
172

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
173
        video_fps = [self.video_fps[i] for i in indices]
174
        metadata = {
175
            "video_paths": video_paths,
176
            "video_pts": video_pts,
177
            "video_fps": video_fps,
178
        }
179
180
181
182
183
184
185
186
187
188
        return type(self)(
            video_paths,
            self.num_frames,
            self.step,
            self.frame_rate,
            _precomputed_metadata=metadata,
            num_workers=self.num_workers,
            _video_width=self._video_width,
            _video_height=self._video_height,
            _video_min_dimension=self._video_min_dimension,
189
            _video_max_dimension=self._video_max_dimension,
190
191
192
            _audio_samples=self._audio_samples,
            _audio_channels=self._audio_channels,
        )
193

194
195
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
196
197
198
199
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
200
201
202
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
203
204
205
        idxs = VideoClips._resample_video_idx(
            int(math.floor(total_frames)), fps, frame_rate
        )
206
207
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
208
209
210
        if not clips.numel():
            warnings.warn("There aren't enough frames in the current video to get a clip for the given clip length and "
                          "frames between clips. The video (and potentially others) will be skipped.")
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
232
        for video_pts, fps in zip(self.video_pts, self.video_fps):
233
234
235
            clips, idxs = self.compute_clips_for_video(
                video_pts, num_frames, step, fps, frame_rate
            )
236
237
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
291
292
293
294
            raise IndexError(
                "Index {} out of range "
                "({} number of clips)".format(idx, self.num_clips())
            )
295
296
297
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
298

299
        from torchvision import get_video_backend
300

301
302
303
304
305
306
307
308
309
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
310
311
312
                raise ValueError(
                    "pyav backend doesn't support _video_min_dimension != 0"
                )
313
314
315
316
            if self._video_max_dimension != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_max_dimension != 0"
                )
317
318
319
320
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
321
322
323
324
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
325
            info = _probe_video_from_file(video_path)
326
            video_fps = info.video_fps
327
            audio_fps = None
328
329
330
331
332
333

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
334
335
336
337
338
339
340
            video_timebase = Fraction(
                info.video_timebase.numerator, info.video_timebase.denominator
            )
            if info.has_audio:
                audio_timebase = Fraction(
                    info.audio_timebase.numerator, info.audio_timebase.denominator
                )
341
                audio_start_pts = pts_convert(
342
                    video_start_pts, video_timebase, audio_timebase, math.floor
343
344
                )
                audio_end_pts = pts_convert(
345
                    video_end_pts, video_timebase, audio_timebase, math.ceil
346
                )
347
                audio_fps = info.audio_sample_rate
348
349
            video, audio, info = _read_video_from_file(
                video_path,
350
351
352
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
353
                video_max_dimension=self._video_max_dimension,
354
                video_pts_range=(video_start_pts, video_end_pts),
355
                video_timebase=video_timebase,
356
                audio_samples=self._audio_samples,
357
                audio_channels=self._audio_channels,
358
359
360
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
361
362
363
364
365

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

366
367
368
369
370
371
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
372
373
374
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames
        )
375
        return video, audio, info, video_idx