video_utils.py 12.5 KB
Newer Older
1
2
import bisect
import math
3
4
from fractions import Fraction

5
import torch
6
from torchvision.io import (
7
    _probe_video_from_file,
8
    _read_video_from_file,
9
10
11
    _read_video_timestamps_from_file,
    read_video,
    read_video_timestamps,
12
)
13

14
15
from .utils import tqdm

16

17
18
19
20
21
22
23
24
25
26
27
28
def pts_convert(pts, timebase_from, timebase_to, round_func=math.floor):
    """convert pts between different time bases
    Args:
        pts: presentation timestamp, float
        timebase_from: original timebase. Fraction
        timebase_to: new timebase. Fraction
        round_func: rounding function.
    """
    new_pts = Fraction(pts, 1) * timebase_from / timebase_to
    return round_func(new_pts)


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def unfold(tensor, size, step, dilation=1):
    """
    similar to tensor.unfold, but with the dilation
    and specialized for 1d tensors

    Returns all consecutive windows of `size` elements, with
    `step` between windows. The distance between each element
    in a window is given by `dilation`.
    """
    assert tensor.dim() == 1
    o_stride = tensor.stride(0)
    numel = tensor.numel()
    new_stride = (step * o_stride, dilation * o_stride)
    new_size = ((numel - (dilation * (size - 1) + 1)) // step + 1, size)
    if new_size[0] < 1:
        new_size = (0, size)
    return torch.as_strided(tensor, new_size, new_stride)


48
49
50
51
52
class _DummyDataset(object):
    """
    Dummy dataset used for DataLoader in VideoClips.
    Defined at top level so it can be pickled when forking.
    """
53

54
55
56
57
58
59
60
61
62
63
    def __init__(self, x):
        self.x = x

    def __len__(self):
        return len(self.x)

    def __getitem__(self, idx):
        return read_video_timestamps(self.x[idx])


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class VideoClips(object):
    """
    Given a list of video files, computes all consecutive subvideos of size
    `clip_length_in_frames`, where the distance between each subvideo in the
    same video is defined by `frames_between_clips`.
    If `frame_rate` is specified, it will also resample all the videos to have
    the same frame rate, and the clips will refer to this frame rate.

    Creating this instance the first time is time-consuming, as it needs to
    decode all the videos in `video_paths`. It is recommended that you
    cache the results after instantiation of the class.

    Recreating the clips for different clip lengths is fast, and can be done
    with the `compute_clips` method.

    Arguments:
        video_paths (List[str]): paths to the video files
        clip_length_in_frames (int): size of a clip in number of frames
        frames_between_clips (int): step (in frames) between each clip
        frame_rate (int, optional): if specified, it will resample the video
            so that it has `frame_rate`, and then the clips will be defined
            on the resampled video
ekosman's avatar
ekosman committed
86
87
        num_workers (int): how many subprocesses to use for data loading.
            0 means that the data will be loaded in the main process. (default: 0)
88
    """
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

    def __init__(
        self,
        video_paths,
        clip_length_in_frames=16,
        frames_between_clips=1,
        frame_rate=None,
        _precomputed_metadata=None,
        num_workers=0,
        _video_width=0,
        _video_height=0,
        _video_min_dimension=0,
        _audio_samples=0,
        _audio_channels=0,
    ):
104

105
        self.video_paths = video_paths
106
        self.num_workers = num_workers
107
108

        # these options are not valid for pyav backend
109
110
111
112
        self._video_width = _video_width
        self._video_height = _video_height
        self._video_min_dimension = _video_min_dimension
        self._audio_samples = _audio_samples
113
        self._audio_channels = _audio_channels
ekosman's avatar
ekosman committed
114

115
116
117
118
        if _precomputed_metadata is None:
            self._compute_frame_pts()
        else:
            self._init_from_metadata(_precomputed_metadata)
119
120
        self.compute_clips(clip_length_in_frames, frames_between_clips, frame_rate)

121
122
123
    def _collate_fn(self, x):
        return x

124
125
    def _compute_frame_pts(self):
        self.video_pts = []
126
        self.video_fps = []
127
128
129
130

        # strategy: use a DataLoader to parallelize read_video_timestamps
        # so need to create a dummy dataset first
        import torch.utils.data
131

132
        dl = torch.utils.data.DataLoader(
133
            _DummyDataset(self.video_paths),
134
            batch_size=16,
135
            num_workers=self.num_workers,
136
137
            collate_fn=self._collate_fn,
        )
138
139
140
141

        with tqdm(total=len(dl)) as pbar:
            for batch in dl:
                pbar.update(1)
142
143
144
145
                clips, fps = list(zip(*batch))
                clips = [torch.as_tensor(c) for c in clips]
                self.video_pts.extend(clips)
                self.video_fps.extend(fps)
146

147
    def _init_from_metadata(self, metadata):
148
        self.video_paths = metadata["video_paths"]
149
150
        assert len(self.video_paths) == len(metadata["video_pts"])
        self.video_pts = metadata["video_pts"]
151
152
        assert len(self.video_paths) == len(metadata["video_fps"])
        self.video_fps = metadata["video_fps"]
153
154
155
156
157
158

    @property
    def metadata(self):
        _metadata = {
            "video_paths": self.video_paths,
            "video_pts": self.video_pts,
159
            "video_fps": self.video_fps,
160
        }
161
        return _metadata
162
163
164
165

    def subset(self, indices):
        video_paths = [self.video_paths[i] for i in indices]
        video_pts = [self.video_pts[i] for i in indices]
166
        video_fps = [self.video_fps[i] for i in indices]
167
        metadata = {
168
            "video_paths": video_paths,
169
            "video_pts": video_pts,
170
            "video_fps": video_fps,
171
        }
172
173
174
175
176
177
178
179
180
181
182
183
184
        return type(self)(
            video_paths,
            self.num_frames,
            self.step,
            self.frame_rate,
            _precomputed_metadata=metadata,
            num_workers=self.num_workers,
            _video_width=self._video_width,
            _video_height=self._video_height,
            _video_min_dimension=self._video_min_dimension,
            _audio_samples=self._audio_samples,
            _audio_channels=self._audio_channels,
        )
185

186
187
    @staticmethod
    def compute_clips_for_video(video_pts, num_frames, step, fps, frame_rate):
188
189
190
191
        if fps is None:
            # if for some reason the video doesn't have fps (because doesn't have a video stream)
            # set the fps to 1. The value doesn't matter, because video_pts is empty anyway
            fps = 1
192
193
194
        if frame_rate is None:
            frame_rate = fps
        total_frames = len(video_pts) * (float(frame_rate) / fps)
195
196
197
        idxs = VideoClips._resample_video_idx(
            int(math.floor(total_frames)), fps, frame_rate
        )
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        video_pts = video_pts[idxs]
        clips = unfold(video_pts, num_frames, step)
        if isinstance(idxs, slice):
            idxs = [idxs] * len(clips)
        else:
            idxs = unfold(idxs, num_frames, step)
        return clips, idxs

    def compute_clips(self, num_frames, step, frame_rate=None):
        """
        Compute all consecutive sequences of clips from video_pts.
        Always returns clips of size `num_frames`, meaning that the
        last few frames in a video can potentially be dropped.

        Arguments:
            num_frames (int): number of frames for the clip
            step (int): distance between two clips
        """
        self.num_frames = num_frames
        self.step = step
        self.frame_rate = frame_rate
        self.clips = []
        self.resampling_idxs = []
221
        for video_pts, fps in zip(self.video_pts, self.video_fps):
222
223
224
            clips, idxs = self.compute_clips_for_video(
                video_pts, num_frames, step, fps, frame_rate
            )
225
226
            self.clips.append(clips)
            self.resampling_idxs.append(idxs)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        clip_lengths = torch.as_tensor([len(v) for v in self.clips])
        self.cumulative_sizes = clip_lengths.cumsum(0).tolist()

    def __len__(self):
        return self.num_clips()

    def num_videos(self):
        return len(self.video_paths)

    def num_clips(self):
        """
        Number of subclips that are available in the video list.
        """
        return self.cumulative_sizes[-1]

    def get_clip_location(self, idx):
        """
        Converts a flattened representation of the indices into a video_idx, clip_idx
        representation.
        """
        video_idx = bisect.bisect_right(self.cumulative_sizes, idx)
        if video_idx == 0:
            clip_idx = idx
        else:
            clip_idx = idx - self.cumulative_sizes[video_idx - 1]
        return video_idx, clip_idx

    @staticmethod
    def _resample_video_idx(num_frames, original_fps, new_fps):
        step = float(original_fps) / new_fps
        if step.is_integer():
            # optimization: if step is integer, don't need to perform
            # advanced indexing
            step = int(step)
            return slice(None, None, step)
        idxs = torch.arange(num_frames, dtype=torch.float32) * step
        idxs = idxs.floor().to(torch.int64)
        return idxs

    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
280
281
282
283
            raise IndexError(
                "Index {} out of range "
                "({} number of clips)".format(idx, self.num_clips())
            )
284
285
286
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
287

288
        from torchvision import get_video_backend
289

290
291
292
293
294
295
296
297
298
        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError("pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError("pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
299
300
301
                raise ValueError(
                    "pyav backend doesn't support _video_min_dimension != 0"
                )
302
303
304
305
            if self._audio_samples != 0:
                raise ValueError("pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
306
307
308
309
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
310
            info = _probe_video_from_file(video_path)
311
            video_fps = info.video_fps
312
            audio_fps = None
313
314
315
316
317
318

            video_start_pts = clip_pts[0].item()
            video_end_pts = clip_pts[-1].item()

            audio_start_pts, audio_end_pts = 0, -1
            audio_timebase = Fraction(0, 1)
319
320
321
322
323
324
325
            video_timebase = Fraction(
                info.video_timebase.numerator, info.video_timebase.denominator
            )
            if info.has_audio:
                audio_timebase = Fraction(
                    info.audio_timebase.numerator, info.audio_timebase.denominator
                )
326
                audio_start_pts = pts_convert(
327
                    video_start_pts, video_timebase, audio_timebase, math.floor
328
329
                )
                audio_end_pts = pts_convert(
330
                    video_end_pts, video_timebase, audio_timebase, math.ceil
331
                )
332
                audio_fps = info.audio_sample_rate
333
334
            video, audio, info = _read_video_from_file(
                video_path,
335
336
337
                video_width=self._video_width,
                video_height=self._video_height,
                video_min_dimension=self._video_min_dimension,
338
                video_pts_range=(video_start_pts, video_end_pts),
339
                video_timebase=video_timebase,
340
                audio_samples=self._audio_samples,
341
                audio_channels=self._audio_channels,
342
343
344
                audio_pts_range=(audio_start_pts, audio_end_pts),
                audio_timebase=audio_timebase,
            )
345
346
347
348
349

            info = {"video_fps": video_fps}
            if audio_fps is not None:
                info["audio_fps"] = audio_fps

350
351
352
353
354
355
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
356
357
358
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames
        )
359
        return video, audio, info, video_idx