shufflenetv2.py 15.7 KB
Newer Older
1
2
from functools import partial
from typing import Any, List, Optional, Union
3

4
5
import torch
import torch.nn as nn
6
from torch import Tensor
7
from torchvision.models import shufflenetv2
8

9
from ...transforms._presets import ImageClassification
10
11
12
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
13
14
15
16
17
18
from ..shufflenetv2 import (
    ShuffleNet_V2_X0_5_Weights,
    ShuffleNet_V2_X1_0_Weights,
    ShuffleNet_V2_X1_5_Weights,
    ShuffleNet_V2_X2_0_Weights,
)
19
from .utils import _fuse_modules, _replace_relu, quantize_model
20

21

22
__all__ = [
23
    "QuantizableShuffleNetV2",
24
25
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
26
27
    "ShuffleNet_V2_X1_5_QuantizedWeights",
    "ShuffleNet_V2_X2_0_QuantizedWeights",
28
29
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
30
31
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
32
33
34
35
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
36
    def __init__(self, *args: Any, **kwargs: Any) -> None:
37
        super().__init__(*args, **kwargs)
38
39
        self.cat = nn.quantized.FloatFunctional()

40
    def forward(self, x: Tensor) -> Tensor:
41
42
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
43
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
44
        else:
45
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
46
47
48
49
50
51
52

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
53
54
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
55
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
56
57
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
58

59
    def forward(self, x: Tensor) -> Tensor:
60
        x = self.quant(x)
61
        x = self._forward_impl(x)
62
63
64
        x = self.dequant(x)
        return x

65
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
66
67
68
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
69
70
71
72
73
        Model is modified in place.

        .. note::
            Note that this operation does not change numerics
            and the model after modification is in floating point
74
75
        """
        for name, m in self._modules.items():
76
77
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
78
        for m in self.modules():
79
            if type(m) is QuantizableInvertedResidual:
80
                if len(m.branch1._modules.items()) > 0:
81
82
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
83
84
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
85
                    is_qat,
86
87
88
89
                    inplace=True,
                )


90
def _shufflenetv2(
91
92
93
94
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
95
96
97
98
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
99
100
101
102
103
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
104

105
    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
106
107
108
109
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

110
111
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
112
113
114
115

    return model


116
117
118
119
120
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "backend": "fbgemm",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
121
122
123
124
    "_docs": """
        These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
        weights listed below.
    """,
125
126
127
128
129
130
131
132
133
134
135
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
136
137
138
139
            "metrics": {
                "acc@1": 57.972,
                "acc@5": 79.780,
            },
140
141
142
143
144
145
146
147
148
149
150
151
152
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
153
154
155
156
            "metrics": {
                "acc@1": 68.360,
                "acc@5": 87.582,
            },
157
158
159
160
161
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 3503624,
            "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 72.052,
                "acc@5": 90.700,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 7393996,
            "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 75.354,
                "acc@5": 92.488,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


198
199
200
201
202
203
204
205
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
206
def shufflenet_v2_x0_5(
207
208
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
209
210
211
212
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
213
214
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
215
216
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
217

218
219
220
221
222
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

223
    Args:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
        :members:
        :noindex:
244
    """
245
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
246
    return _shufflenetv2(
247
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
248
    )
249
250


251
252
253
254
255
256
257
258
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
259
def shufflenet_v2_x1_0(
260
261
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
262
263
264
265
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
266
267
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
268
269
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
270

271
272
273
274
275
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

276
    Args:
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
        :members:
        :noindex:
297
    """
298
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
299
    return _shufflenetv2(
300
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
301
    )
302
303
304
305
306
307
308
309
310
311
312


def shufflenet_v2_x1_5(
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 1.5x output channels, as described in
313
314
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
315

316
317
318
319
320
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

321
    Args:
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
        :members:
        :noindex:
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    """
    weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


def shufflenet_v2_x2_0(
    *,
    weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 2.0x output channels, as described in
358
359
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
360

361
362
363
364
365
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

366
    Args:
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
        :members:
        :noindex:
387
388
389
390
391
    """
    weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
    )
392
393
394
395
396
397
398
399
400
401
402
403
404


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..shufflenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "shufflenetv2_x0.5_fbgemm": ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
        "shufflenetv2_x1.0_fbgemm": ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
    }
)