shufflenetv2.py 15.5 KB
Newer Older
1
2
from functools import partial
from typing import Any, List, Optional, Union
3

4
5
import torch
import torch.nn as nn
6
from torch import Tensor
7
from torchvision.models import shufflenetv2
8

9
from ...transforms._presets import ImageClassification
10
11
12
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
13
14
15
16
17
18
from ..shufflenetv2 import (
    ShuffleNet_V2_X0_5_Weights,
    ShuffleNet_V2_X1_0_Weights,
    ShuffleNet_V2_X1_5_Weights,
    ShuffleNet_V2_X2_0_Weights,
)
19
from .utils import _fuse_modules, _replace_relu, quantize_model
20

21

22
__all__ = [
23
    "QuantizableShuffleNetV2",
24
25
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
26
27
    "ShuffleNet_V2_X1_5_QuantizedWeights",
    "ShuffleNet_V2_X2_0_QuantizedWeights",
28
29
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
30
31
    "shufflenet_v2_x1_5",
    "shufflenet_v2_x2_0",
32
33
34
35
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
36
    def __init__(self, *args: Any, **kwargs: Any) -> None:
37
        super().__init__(*args, **kwargs)
38
39
        self.cat = nn.quantized.FloatFunctional()

40
    def forward(self, x: Tensor) -> Tensor:
41
42
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
43
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
44
        else:
45
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
46
47
48
49
50
51
52

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
53
54
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
55
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
56
57
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
58

59
    def forward(self, x: Tensor) -> Tensor:
60
        x = self.quant(x)
61
        x = self._forward_impl(x)
62
63
64
        x = self.dequant(x)
        return x

65
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
66
67
68
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
69
70
71
72
73
        Model is modified in place.

        .. note::
            Note that this operation does not change numerics
            and the model after modification is in floating point
74
75
        """
        for name, m in self._modules.items():
76
77
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
78
        for m in self.modules():
79
            if type(m) is QuantizableInvertedResidual:
80
                if len(m.branch1._modules.items()) > 0:
81
82
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
83
84
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
85
                    is_qat,
86
87
88
89
                    inplace=True,
                )


90
def _shufflenetv2(
91
92
93
94
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
95
96
97
98
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
99
100
101
102
103
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
104

105
    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
106
107
108
109
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

110
111
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
112
113
114
115

    return model


116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "backend": "fbgemm",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
132
133
134
135
            "metrics": {
                "acc@1": 57.972,
                "acc@5": 79.780,
            },
136
137
138
139
140
141
142
143
144
145
146
147
148
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
149
150
151
152
            "metrics": {
                "acc@1": 68.360,
                "acc@5": 87.582,
            },
153
154
155
156
157
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_5_fbgemm-d7401f05.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 3503624,
            "unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 72.052,
                "acc@5": 90.700,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x2_0_fbgemm-5cac526c.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "recipe": "https://github.com/pytorch/vision/pull/5906",
            "num_params": 7393996,
            "unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
            "metrics": {
                "acc@1": 75.354,
                "acc@5": 92.488,
            },
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


194
195
196
197
198
199
200
201
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
202
def shufflenet_v2_x0_5(
203
204
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
205
206
207
208
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
209
210
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
211
212
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
213

214
215
216
217
218
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

219
    Args:
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X0_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X0_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X0_5_Weights
        :members:
        :noindex:
240
    """
241
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
242
    return _shufflenetv2(
243
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
244
    )
245
246


247
248
249
250
251
252
253
254
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
255
def shufflenet_v2_x1_0(
256
257
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
258
259
260
261
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
262
263
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
264
265
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
266

267
268
269
270
271
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

272
    Args:
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_0_Weights
        :members:
        :noindex:
293
    """
294
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
295
    return _shufflenetv2(
296
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
297
    )
298
299
300
301
302
303
304
305
306
307
308


def shufflenet_v2_x1_5(
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_5_QuantizedWeights, ShuffleNet_V2_X1_5_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 1.5x output channels, as described in
309
310
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
311

312
313
314
315
316
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

317
    Args:
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X1_5_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X1_5_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X1_5_Weights
        :members:
        :noindex:
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
    """
    weights = (ShuffleNet_V2_X1_5_QuantizedWeights if quantize else ShuffleNet_V2_X1_5_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 176, 352, 704, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
    )


def shufflenet_v2_x2_0(
    *,
    weights: Optional[Union[ShuffleNet_V2_X2_0_QuantizedWeights, ShuffleNet_V2_X2_0_Weights]] = None,
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
    """
    Constructs a ShuffleNetV2 with 2.0x output channels, as described in
354
355
    `ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    <https://arxiv.org/abs/1807.11164>`__.
356

357
358
359
360
361
    .. note::
        Note that ``quantize = True`` returns a quantized model with 8 bit
        weights. Quantized models only support inference and run on CPUs.
        GPU inference is not yet supported.

362
    Args:
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        weights (:class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` or :class:`~torchvision.models.ShuffleNet_V2_X2_0_Weights`, optional): The
            pretrained weights for the model. See
            :class:`~torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the download to stderr.
            Default is True.
        quantize (bool, optional): If True, return a quantized version of the model.
            Default is False.
        **kwargs: parameters passed to the ``torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/quantization/shufflenetv2.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.quantization.ShuffleNet_V2_X2_0_QuantizedWeights
        :members:

    .. autoclass:: torchvision.models.ShuffleNet_V2_X2_0_Weights
        :members:
        :noindex:
383
384
385
386
387
    """
    weights = (ShuffleNet_V2_X2_0_QuantizedWeights if quantize else ShuffleNet_V2_X2_0_Weights).verify(weights)
    return _shufflenetv2(
        [4, 8, 4], [24, 244, 488, 976, 2048], weights=weights, progress=progress, quantize=quantize, **kwargs
    )
388
389
390
391
392
393
394
395
396
397
398
399
400


# The dictionary below is internal implementation detail and will be removed in v0.15
from .._utils import _ModelURLs
from ..shufflenetv2 import model_urls  # noqa: F401


quant_model_urls = _ModelURLs(
    {
        "shufflenetv2_x0.5_fbgemm": ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
        "shufflenetv2_x1.0_fbgemm": ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1.url,
    }
)