shufflenetv2.py 7.24 KB
Newer Older
1
2
from functools import partial
from typing import Any, List, Optional, Union
3

4
5
import torch
import torch.nn as nn
6
from torch import Tensor
7
from torchvision.models import shufflenetv2
8

9
from ...transforms._presets import ImageClassification
10
11
12
13
from .._api import WeightsEnum, Weights
from .._meta import _IMAGENET_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_named_param
from ..shufflenetv2 import ShuffleNet_V2_X0_5_Weights, ShuffleNet_V2_X1_0_Weights
14
from .utils import _fuse_modules, _replace_relu, quantize_model
15

16

17
__all__ = [
18
    "QuantizableShuffleNetV2",
19
20
    "ShuffleNet_V2_X0_5_QuantizedWeights",
    "ShuffleNet_V2_X1_0_QuantizedWeights",
21
22
    "shufflenet_v2_x0_5",
    "shufflenet_v2_x1_0",
23
24
25
26
]


class QuantizableInvertedResidual(shufflenetv2.InvertedResidual):
27
    def __init__(self, *args: Any, **kwargs: Any) -> None:
28
        super().__init__(*args, **kwargs)
29
30
        self.cat = nn.quantized.FloatFunctional()

31
    def forward(self, x: Tensor) -> Tensor:
32
33
        if self.stride == 1:
            x1, x2 = x.chunk(2, dim=1)
34
            out = self.cat.cat([x1, self.branch2(x2)], dim=1)
35
        else:
36
            out = self.cat.cat([self.branch1(x), self.branch2(x)], dim=1)
37
38
39
40
41
42
43

        out = shufflenetv2.channel_shuffle(out, 2)

        return out


class QuantizableShuffleNetV2(shufflenetv2.ShuffleNetV2):
44
45
    # TODO https://github.com/pytorch/vision/pull/4232#pullrequestreview-730461659
    def __init__(self, *args: Any, **kwargs: Any) -> None:
46
        super().__init__(*args, inverted_residual=QuantizableInvertedResidual, **kwargs)  # type: ignore[misc]
47
48
        self.quant = torch.ao.quantization.QuantStub()
        self.dequant = torch.ao.quantization.DeQuantStub()
49

50
    def forward(self, x: Tensor) -> Tensor:
51
        x = self.quant(x)
52
        x = self._forward_impl(x)
53
54
55
        x = self.dequant(x)
        return x

56
    def fuse_model(self, is_qat: Optional[bool] = None) -> None:
57
58
59
60
61
62
63
        r"""Fuse conv/bn/relu modules in shufflenetv2 model

        Fuse conv+bn+relu/ conv+relu/conv+bn modules to prepare for quantization.
        Model is modified in place.  Note that this operation does not change numerics
        and the model after modification is in floating point
        """
        for name, m in self._modules.items():
64
65
            if name in ["conv1", "conv5"] and m is not None:
                _fuse_modules(m, [["0", "1", "2"]], is_qat, inplace=True)
66
        for m in self.modules():
67
            if type(m) is QuantizableInvertedResidual:
68
                if len(m.branch1._modules.items()) > 0:
69
70
                    _fuse_modules(m.branch1, [["0", "1"], ["2", "3", "4"]], is_qat, inplace=True)
                _fuse_modules(
71
72
                    m.branch2,
                    [["0", "1", "2"], ["3", "4"], ["5", "6", "7"]],
73
                    is_qat,
74
75
76
77
                    inplace=True,
                )


78
def _shufflenetv2(
79
80
81
82
    stages_repeats: List[int],
    stages_out_channels: List[int],
    *,
    weights: Optional[WeightsEnum],
83
84
85
86
    progress: bool,
    quantize: bool,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
87
88
89
90
91
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
        if "backend" in weights.meta:
            _ovewrite_named_param(kwargs, "backend", weights.meta["backend"])
    backend = kwargs.pop("backend", "fbgemm")
92

93
    model = QuantizableShuffleNetV2(stages_repeats, stages_out_channels, **kwargs)
94
95
96
97
    _replace_relu(model)
    if quantize:
        quantize_model(model, backend)

98
99
    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
100
101
102
103

    return model


104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
    "backend": "fbgemm",
    "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
}


class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x0.5_fbgemm-00845098.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 1366792,
            "unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
            "acc@1": 57.972,
            "acc@5": 79.780,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
    IMAGENET1K_FBGEMM_V1 = Weights(
        url="https://download.pytorch.org/models/quantized/shufflenetv2_x1_fbgemm-db332c57.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 2278604,
            "unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
            "acc@1": 68.360,
            "acc@5": 87.582,
        },
    )
    DEFAULT = IMAGENET1K_FBGEMM_V1


@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
    )
)
150
def shufflenet_v2_x0_5(
151
152
    *,
    weights: Optional[Union[ShuffleNet_V2_X0_5_QuantizedWeights, ShuffleNet_V2_X0_5_Weights]] = None,
153
154
155
156
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
157
158
159
160
161
162
    """
    Constructs a ShuffleNetV2 with 0.5x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
163
164
        weights (ShuffleNet_V2_X0_5_QuantizedWeights or ShuffleNet_V2_X0_5_Weights, optional): The pretrained
            weights for the model
165
        progress (bool): If True, displays a progress bar of the download to stderr
166
        quantize (bool): If True, return a quantized version of the model
167
    """
168
    weights = (ShuffleNet_V2_X0_5_QuantizedWeights if quantize else ShuffleNet_V2_X0_5_Weights).verify(weights)
169
    return _shufflenetv2(
170
        [4, 8, 4], [24, 48, 96, 192, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
171
    )
172
173


174
175
176
177
178
179
180
181
@handle_legacy_interface(
    weights=(
        "pretrained",
        lambda kwargs: ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1
        if kwargs.get("quantize", False)
        else ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
    )
)
182
def shufflenet_v2_x1_0(
183
184
    *,
    weights: Optional[Union[ShuffleNet_V2_X1_0_QuantizedWeights, ShuffleNet_V2_X1_0_Weights]] = None,
185
186
187
188
    progress: bool = True,
    quantize: bool = False,
    **kwargs: Any,
) -> QuantizableShuffleNetV2:
189
190
191
192
193
194
    """
    Constructs a ShuffleNetV2 with 1.0x output channels, as described in
    `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design"
    <https://arxiv.org/abs/1807.11164>`_.

    Args:
195
196
        weights (ShuffleNet_V2_X1_0_QuantizedWeights or ShuffleNet_V2_X1_0_Weights, optional): The pretrained
            weights for the model
197
        progress (bool): If True, displays a progress bar of the download to stderr
198
        quantize (bool): If True, return a quantized version of the model
199
    """
200
    weights = (ShuffleNet_V2_X1_0_QuantizedWeights if quantize else ShuffleNet_V2_X1_0_Weights).verify(weights)
201
    return _shufflenetv2(
202
        [4, 8, 4], [24, 116, 232, 464, 1024], weights=weights, progress=progress, quantize=quantize, **kwargs
203
    )