_geometry.py 66.4 KB
Newer Older
1
2
3
import math
import numbers
import warnings
4
from typing import Any, Callable, cast, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union
5
6
7
8

import PIL.Image
import torch

9
from torchvision import transforms as _transforms, tv_tensors
10
11
12
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import _get_perspective_coeffs
from torchvision.transforms.v2 import functional as F, InterpolationMode, Transform
13
from torchvision.transforms.v2.functional._utils import _FillType
14
15
16
17
18
19

from ._transform import _RandomApplyTransform
from ._utils import (
    _check_padding_arg,
    _check_padding_mode_arg,
    _check_sequence_input,
20
    _get_fill,
21
22
    _setup_angle,
    _setup_fill_arg,
23
    _setup_number_or_seq,
24
    _setup_size,
Nicolas Hug's avatar
Nicolas Hug committed
25
26
27
28
29
    get_bounding_boxes,
    has_all,
    has_any,
    is_pure_tensor,
    query_size,
30
31
32
33
)


class RandomHorizontalFlip(_RandomApplyTransform):
34
    """[BETA] Horizontally flip the input with a given probability.
35

36
    .. v2betastatus:: RandomHorizontalFlip transform
37

38
39
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
40
41
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
42
43

    Args:
44
        p (float, optional): probability of the input being flipped. Default value is 0.5
45
46
    """

47
48
49
    _v1_transform_cls = _transforms.RandomHorizontalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
50
        return self._call_kernel(F.horizontal_flip, inpt)
51
52
53


class RandomVerticalFlip(_RandomApplyTransform):
54
    """[BETA] Vertically flip the input with a given probability.
55

56
    .. v2betastatus:: RandomVerticalFlip transform
57

58
59
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
60
61
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
62
63

    Args:
64
        p (float, optional): probability of the input being flipped. Default value is 0.5
65
66
    """

67
68
69
    _v1_transform_cls = _transforms.RandomVerticalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
70
        return self._call_kernel(F.vertical_flip, inpt)
71
72
73


class Resize(Transform):
74
    """[BETA] Resize the input to the given size.
75

76
    .. v2betastatus:: Resize transform
77

78
79
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
80
81
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
82
83
84
85
86
87
88
89
90
91

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
92
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
93
94
95
96
97
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        max_size (int, optional): The maximum allowed for the longer edge of
98
            the resized image. If the longer edge of the image is greater
Nicolas Hug's avatar
Nicolas Hug committed
99
            than ``max_size`` after being resized according to ``size``,
100
101
            ``size`` will be overruled so that the longer edge is equal to
            ``max_size``.
Nicolas Hug's avatar
Nicolas Hug committed
102
            As a result, the smaller edge may be shorter than ``size``. This
103
104
            is only supported if ``size`` is an int (or a sequence of length
            1 in torchscript mode).
105
106
107
108
109
110
111
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

112
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
113
114
115
116
117
118
119
120
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

121
122
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
123
124
    """

125
126
127
128
129
130
131
    _v1_transform_cls = _transforms.Resize

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        max_size: Optional[int] = None,
132
        antialias: Optional[bool] = True,
133
134
135
136
137
138
139
140
141
142
143
144
145
    ) -> None:
        super().__init__()

        if isinstance(size, int):
            size = [size]
        elif isinstance(size, (list, tuple)) and len(size) in {1, 2}:
            size = list(size)
        else:
            raise ValueError(
                f"size can either be an integer or a list or tuple of one or two integers, " f"but got {size} instead."
            )
        self.size = size

146
        self.interpolation = interpolation
147
148
149
150
        self.max_size = max_size
        self.antialias = antialias

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
151
152
        return self._call_kernel(
            F.resize,
153
154
155
156
157
158
159
160
161
            inpt,
            self.size,
            interpolation=self.interpolation,
            max_size=self.max_size,
            antialias=self.antialias,
        )


class CenterCrop(Transform):
162
    """[BETA] Crop the input at the center.
163

164
    .. v2betastatus:: CenterCrop transform
165

166
167
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
168
169
170
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

171
172
173
174
175
176
177
178
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
    """

179
180
181
182
183
184
185
    _v1_transform_cls = _transforms.CenterCrop

    def __init__(self, size: Union[int, Sequence[int]]):
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
186
        return self._call_kernel(F.center_crop, inpt, output_size=self.size)
187
188
189


class RandomResizedCrop(Transform):
190
    """[BETA] Crop a random portion of the input and resize it to a given size.
191

192
    .. v2betastatus:: RandomResizedCrop transform
193

194
195
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
196
197
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
198

199
    A crop of the original input is made: the crop has a random area (H * W)
200
201
202
203
204
205
206
207
208
209
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.

    Args:
        size (int or sequence): expected output size of the crop, for each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
210
        scale (tuple of float, optional): Specifies the lower and upper bounds for the random area of the crop,
211
            before resizing. The scale is defined with respect to the area of the original image.
212
        ratio (tuple of float, optional): lower and upper bounds for the random aspect ratio of the crop, before
213
            resizing.
214
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
215
216
217
218
219
220
221
222
223
224
225
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

226
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
227
228
229
230
231
232
233
234
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

235
236
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
237
238
    """

239
240
241
242
243
244
245
246
    _v1_transform_cls = _transforms.RandomResizedCrop

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        scale: Tuple[float, float] = (0.08, 1.0),
        ratio: Tuple[float, float] = (3.0 / 4.0, 4.0 / 3.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
247
        antialias: Optional[bool] = True,
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    ) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if not isinstance(scale, Sequence):
            raise TypeError("Scale should be a sequence")
        scale = cast(Tuple[float, float], scale)
        if not isinstance(ratio, Sequence):
            raise TypeError("Ratio should be a sequence")
        ratio = cast(Tuple[float, float], ratio)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("Scale and ratio should be of kind (min, max)")

        self.scale = scale
        self.ratio = ratio
263
        self.interpolation = interpolation
264
265
266
267
268
        self.antialias = antialias

        self._log_ratio = torch.log(torch.tensor(self.ratio))

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
269
        height, width = query_size(flat_inputs)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        area = height * width

        log_ratio = self._log_ratio
        for _ in range(10):
            target_area = area * torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(
                    log_ratio[0],  # type: ignore[arg-type]
                    log_ratio[1],  # type: ignore[arg-type]
                )
            ).item()

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
                break
        else:
            # Fallback to central crop
            in_ratio = float(width) / float(height)
            if in_ratio < min(self.ratio):
                w = width
                h = int(round(w / min(self.ratio)))
            elif in_ratio > max(self.ratio):
                h = height
                w = int(round(h * max(self.ratio)))
            else:  # whole image
                w = width
                h = height
            i = (height - h) // 2
            j = (width - w) // 2

        return dict(top=i, left=j, height=h, width=w)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
307
308
        return self._call_kernel(
            F.resized_crop, inpt, **params, size=self.size, interpolation=self.interpolation, antialias=self.antialias
309
310
311
312
        )


class FiveCrop(Transform):
313
    """[BETA] Crop the image or video into four corners and the central crop.
314

315
    .. v2betastatus:: FiveCrop transform
316

317
318
    If the input is a :class:`torch.Tensor` or a :class:`~torchvision.tv_tensors.Image` or a
    :class:`~torchvision.tv_tensors.Video` it can have arbitrary number of leading batch dimensions.
319
    For example, the image can have ``[..., C, H, W]`` shape.
320
321
322
323
324
325
326
327
328
329
330

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

331
332
    Example:
        >>> class BatchMultiCrop(transforms.Transform):
333
        ...     def forward(self, sample: Tuple[Tuple[Union[tv_tensors.Image, tv_tensors.Video], ...], int]):
334
335
336
        ...         images_or_videos, labels = sample
        ...         batch_size = len(images_or_videos)
        ...         image_or_video = images_or_videos[0]
337
        ...         images_or_videos = tv_tensors.wrap(torch.stack(images_or_videos), like=image_or_video)
338
339
340
        ...         labels = torch.full((batch_size,), label, device=images_or_videos.device)
        ...         return images_or_videos, labels
        ...
341
        >>> image = tv_tensors.Image(torch.rand(3, 256, 256))
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        >>> label = 3
        >>> transform = transforms.Compose([transforms.FiveCrop(224), BatchMultiCrop()])
        >>> images, labels = transform(image, label)
        >>> images.shape
        torch.Size([5, 3, 224, 224])
        >>> labels
        tensor([3, 3, 3, 3, 3])
    """

    _v1_transform_cls = _transforms.FiveCrop

    def __init__(self, size: Union[int, Sequence[int]]) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

Nicolas Hug's avatar
Nicolas Hug committed
357
    def _call_kernel(self, functional: Callable, inpt: Any, *args: Any, **kwargs: Any) -> Any:
358
        if isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
359
360
            warnings.warn(
                f"{type(self).__name__}() is currently passing through inputs of type "
361
                f"tv_tensors.{type(inpt).__name__}. This will likely change in the future."
362
            )
Nicolas Hug's avatar
Nicolas Hug committed
363
        return super()._call_kernel(functional, inpt, *args, **kwargs)
364

365
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
366
        return self._call_kernel(F.five_crop, inpt, self.size)
367
368

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
369
        if has_any(flat_inputs, tv_tensors.BoundingBoxes, tv_tensors.Mask):
370
            raise TypeError(f"BoundingBoxes'es and Mask's are not supported by {type(self).__name__}()")
371
372
373


class TenCrop(Transform):
374
    """[BETA] Crop the image or video into four corners and the central crop plus the flipped version of
375
376
    these (horizontal flipping is used by default).

377
    .. v2betastatus:: TenCrop transform
378

379
380
    If the input is a :class:`torch.Tensor` or a :class:`~torchvision.tv_tensors.Image` or a
    :class:`~torchvision.tv_tensors.Video` it can have arbitrary number of leading batch dimensions.
381
    For example, the image can have ``[..., C, H, W]`` shape.
382

383
    See :class:`~torchvision.transforms.v2.FiveCrop` for an example.
384
385
386
387
388
389
390
391
392
393

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
394
        vertical_flip (bool, optional): Use vertical flipping instead of horizontal
395
396
397
398
399
400
401
402
403
    """

    _v1_transform_cls = _transforms.TenCrop

    def __init__(self, size: Union[int, Sequence[int]], vertical_flip: bool = False) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
        self.vertical_flip = vertical_flip

Nicolas Hug's avatar
Nicolas Hug committed
404
    def _call_kernel(self, functional: Callable, inpt: Any, *args: Any, **kwargs: Any) -> Any:
405
        if isinstance(inpt, (tv_tensors.BoundingBoxes, tv_tensors.Mask)):
406
407
            warnings.warn(
                f"{type(self).__name__}() is currently passing through inputs of type "
408
                f"tv_tensors.{type(inpt).__name__}. This will likely change in the future."
409
            )
Nicolas Hug's avatar
Nicolas Hug committed
410
        return super()._call_kernel(functional, inpt, *args, **kwargs)
411

412
    def _check_inputs(self, flat_inputs: List[Any]) -> None:
413
        if has_any(flat_inputs, tv_tensors.BoundingBoxes, tv_tensors.Mask):
414
            raise TypeError(f"BoundingBoxes'es and Mask's are not supported by {type(self).__name__}()")
415

416
    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
417
        return self._call_kernel(F.ten_crop, inpt, self.size, vertical_flip=self.vertical_flip)
418
419
420


class Pad(Transform):
421
    """[BETA] Pad the input on all sides with the given "pad" value.
422

423
    .. v2betastatus:: Pad transform
424

425
426
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
427
428
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
429
430
431
432
433
434
435
436
437
438

    Args:
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
439
440
441
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
442
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
443
444
445
            ``Mask`` will be filled with 0.
        padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is "constant".
446
447
448
449
450
451
452
453
454
455
456
457
458
459

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

460
461
462
463
464
465
    _v1_transform_cls = _transforms.Pad

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
466
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
467
468
469
470
471
472

        return params

    def __init__(
        self,
        padding: Union[int, Sequence[int]],
473
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
474
475
476
477
478
479
480
481
482
483
484
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        _check_padding_arg(padding)
        _check_padding_mode_arg(padding_mode)

        # This cast does Sequence[int] -> List[int] and is required to make mypy happy
        if not isinstance(padding, int):
            padding = list(padding)
        self.padding = padding
485
486
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
487
488
489
        self.padding_mode = padding_mode

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
490
        fill = _get_fill(self._fill, type(inpt))
491
        return self._call_kernel(F.pad, inpt, padding=self.padding, fill=fill, padding_mode=self.padding_mode)  # type: ignore[arg-type]
492
493
494


class RandomZoomOut(_RandomApplyTransform):
495
496
497
    """[BETA] "Zoom out" transformation from
    `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

498
    .. v2betastatus:: RandomZoomOut transform
499
500
501
502
503
504
505
506
507
508
509

    This transformation randomly pads images, videos, bounding boxes and masks creating a zoom out effect.
    Output spatial size is randomly sampled from original size up to a maximum size configured
    with ``side_range`` parameter:

    .. code-block:: python

        r = uniform_sample(side_range[0], side_range[1])
        output_width = input_width * r
        output_height = input_height * r

510
511
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
512
513
514
515
516
517
518
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
519
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
520
521
522
            ``Mask`` will be filled with 0.
        side_range (sequence of floats, optional): tuple of two floats defines minimum and maximum factors to
            scale the input size.
523
        p (float, optional): probability that the zoom operation will be performed.
524
525
    """

526
527
    def __init__(
        self,
528
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
529
530
531
532
533
        side_range: Sequence[float] = (1.0, 4.0),
        p: float = 0.5,
    ) -> None:
        super().__init__(p=p)

534
535
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
536
537
538
539
540

        _check_sequence_input(side_range, "side_range", req_sizes=(2,))

        self.side_range = side_range
        if side_range[0] < 1.0 or side_range[0] > side_range[1]:
541
            raise ValueError(f"Invalid side range provided {side_range}.")
542
543

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
544
        orig_h, orig_w = query_size(flat_inputs)
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

        r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
        canvas_width = int(orig_w * r)
        canvas_height = int(orig_h * r)

        r = torch.rand(2)
        left = int((canvas_width - orig_w) * r[0])
        top = int((canvas_height - orig_h) * r[1])
        right = canvas_width - (left + orig_w)
        bottom = canvas_height - (top + orig_h)
        padding = [left, top, right, bottom]

        return dict(padding=padding)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
560
        fill = _get_fill(self._fill, type(inpt))
561
        return self._call_kernel(F.pad, inpt, **params, fill=fill)
562
563
564


class RandomRotation(Transform):
565
    """[BETA] Rotate the input by angle.
566

567
    .. v2betastatus:: RandomRotation transform
568

569
570
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
571
572
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
573
574
575
576
577

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
578
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
579
580
581
582
583
584
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
585
            Note that the expand flag assumes rotation around the center (see note below) and no translation.
586
587
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
588
589
590
591
592
593
594

            .. note::

                In theory, setting ``center`` has no effect if ``expand=True``, since the image center will become the
                center of rotation. In practice however, due to numerical precision, this can lead to off-by-one
                differences of the resulting image size compared to using the image center in the first place. Thus, when
                setting ``expand=True``, it's best to leave ``center=None`` (default).
595
596
597
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
598
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
599
            ``Mask`` will be filled with 0.
600
601
602
603
604

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

605
606
607
608
609
610
611
612
    _v1_transform_cls = _transforms.RandomRotation

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
        expand: bool = False,
        center: Optional[List[float]] = None,
613
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
614
615
616
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
617
        self.interpolation = interpolation
618
619
        self.expand = expand

620
621
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
622
623
624
625
626
627
628
629
630
631
632

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        return dict(angle=angle)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
633
        fill = _get_fill(self._fill, type(inpt))
634
635
        return self._call_kernel(
            F.rotate,
636
637
638
639
640
641
642
643
644
645
            inpt,
            **params,
            interpolation=self.interpolation,
            expand=self.expand,
            center=self.center,
            fill=fill,
        )


class RandomAffine(Transform):
646
    """[BETA] Random affine transformation the input keeping center invariant.
647

648
    .. v2betastatus:: RandomAffine transform
649

650
651
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
652
653
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or number, optional): Range of degrees to select from.
            If shear is a number, a shear parallel to the x-axis in the range (-shear, +shear)
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x-axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
            an x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default.
671
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
672
673
674
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
675
676
677
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
678
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
679
            ``Mask`` will be filled with 0.
680
681
682
683
684
685
686
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

687
688
689
690
691
692
693
694
695
    _v1_transform_cls = _transforms.RandomAffine

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        translate: Optional[Sequence[float]] = None,
        scale: Optional[Sequence[float]] = None,
        shear: Optional[Union[int, float, Sequence[float]]] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
696
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        center: Optional[List[float]] = None,
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2,))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate
        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2,))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

719
        self.interpolation = interpolation
720
721
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
722
723
724
725
726
727
728

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
729
        height, width = query_size(flat_inputs)
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        if self.translate is not None:
            max_dx = float(self.translate[0] * width)
            max_dy = float(self.translate[1] * height)
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translate = (tx, ty)
        else:
            translate = (0, 0)

        if self.scale is not None:
            scale = torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
        else:
            scale = 1.0

        shear_x = shear_y = 0.0
        if self.shear is not None:
            shear_x = torch.empty(1).uniform_(self.shear[0], self.shear[1]).item()
            if len(self.shear) == 4:
                shear_y = torch.empty(1).uniform_(self.shear[2], self.shear[3]).item()

        shear = (shear_x, shear_y)
        return dict(angle=angle, translate=translate, scale=scale, shear=shear)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
756
        fill = _get_fill(self._fill, type(inpt))
757
758
        return self._call_kernel(
            F.affine,
759
760
761
762
763
764
765
766
767
            inpt,
            **params,
            interpolation=self.interpolation,
            fill=fill,
            center=self.center,
        )


class RandomCrop(Transform):
768
    """[BETA] Crop the input at a random location.
769

770
    .. v2betastatus:: RandomCrop transform
771

772
773
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
774
775
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
776
777
778
779
780
781
782
783
784
785
786
787
788
789

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
790
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
791
792
            desired size to avoid raising an exception. Since cropping is done
            after padding, the padding seems to be done at a random offset.
793
794
795
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
796
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
797
798
            ``Mask`` will be filled with 0.
        padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

814
815
816
817
818
819
    _v1_transform_cls = _transforms.RandomCrop

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
820
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
821
822
823
824
825
826
827
828
829
830
831
832
833
834

        padding = self.padding
        if padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = padding
            padding = [pad_left, pad_top, pad_right, pad_bottom]
        params["padding"] = padding

        return params

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        padding: Optional[Union[int, Sequence[int]]] = None,
        pad_if_needed: bool = False,
835
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
836
837
838
839
840
841
842
843
844
845
846
847
848
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if pad_if_needed or padding is not None:
            if padding is not None:
                _check_padding_arg(padding)
            _check_padding_mode_arg(padding_mode)

        self.padding = F._geometry._parse_pad_padding(padding) if padding else None  # type: ignore[arg-type]
        self.pad_if_needed = pad_if_needed
849
850
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
851
852
853
        self.padding_mode = padding_mode

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
854
        padded_height, padded_width = query_size(flat_inputs)
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

        if self.padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = self.padding
            padded_height += pad_top + pad_bottom
            padded_width += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        cropped_height, cropped_width = self.size

        if self.pad_if_needed:
            if padded_height < cropped_height:
                diff = cropped_height - padded_height

                pad_top += diff
                pad_bottom += diff
                padded_height += 2 * diff

            if padded_width < cropped_width:
                diff = cropped_width - padded_width

                pad_left += diff
                pad_right += diff
                padded_width += 2 * diff

        if padded_height < cropped_height or padded_width < cropped_width:
            raise ValueError(
                f"Required crop size {(cropped_height, cropped_width)} is larger than "
                f"{'padded ' if self.padding is not None else ''}input image size {(padded_height, padded_width)}."
            )

        # We need a different order here than we have in self.padding since this padding will be parsed again in `F.pad`
        padding = [pad_left, pad_top, pad_right, pad_bottom]
        needs_pad = any(padding)

        needs_vert_crop, top = (
            (True, int(torch.randint(0, padded_height - cropped_height + 1, size=())))
            if padded_height > cropped_height
            else (False, 0)
        )
        needs_horz_crop, left = (
            (True, int(torch.randint(0, padded_width - cropped_width + 1, size=())))
            if padded_width > cropped_width
            else (False, 0)
        )

        return dict(
            needs_crop=needs_vert_crop or needs_horz_crop,
            top=top,
            left=left,
            height=cropped_height,
            width=cropped_width,
            needs_pad=needs_pad,
            padding=padding,
        )

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if params["needs_pad"]:
913
            fill = _get_fill(self._fill, type(inpt))
914
            inpt = self._call_kernel(F.pad, inpt, padding=params["padding"], fill=fill, padding_mode=self.padding_mode)
915
916

        if params["needs_crop"]:
917
918
919
            inpt = self._call_kernel(
                F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"]
            )
920
921
922
923
924

        return inpt


class RandomPerspective(_RandomApplyTransform):
925
    """[BETA] Perform a random perspective transformation of the input with a given probability.
926

927
    .. v2betastatus:: RandomPerspective transform
928

929
930
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
931
932
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
933
934

    Args:
935
        distortion_scale (float, optional): argument to control the degree of distortion and ranges from 0 to 1.
936
            Default is 0.5.
937
938
        p (float, optional): probability of the input being transformed. Default is 0.5.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
939
940
941
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
942
943
944
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
945
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
946
            ``Mask`` will be filled with 0.
947
948
    """

949
950
951
952
953
954
    _v1_transform_cls = _transforms.RandomPerspective

    def __init__(
        self,
        distortion_scale: float = 0.5,
        p: float = 0.5,
955
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
956
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
957
958
959
960
961
962
963
    ) -> None:
        super().__init__(p=p)

        if not (0 <= distortion_scale <= 1):
            raise ValueError("Argument distortion_scale value should be between 0 and 1")

        self.distortion_scale = distortion_scale
964
        self.interpolation = interpolation
965
966
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
967
968

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
969
        height, width = query_size(flat_inputs)
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998

        distortion_scale = self.distortion_scale

        half_height = height // 2
        half_width = width // 2
        bound_height = int(distortion_scale * half_height) + 1
        bound_width = int(distortion_scale * half_width) + 1
        topleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        topright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        botright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        botleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]
        perspective_coeffs = _get_perspective_coeffs(startpoints, endpoints)
        return dict(coefficients=perspective_coeffs)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
999
        fill = _get_fill(self._fill, type(inpt))
1000
1001
        return self._call_kernel(
            F.perspective,
1002
            inpt,
1003
1004
            startpoints=None,
            endpoints=None,
1005
1006
1007
1008
1009
1010
1011
            fill=fill,
            interpolation=self.interpolation,
            **params,
        )


class ElasticTransform(Transform):
1012
1013
    """[BETA] Transform the input with elastic transformations.

1014
    .. v2betastatus:: RandomPerspective transform
1015

1016
1017
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to transform the input.

    .. note::
        Implementation to transform bounding boxes is approximative (not exact).
1029
        We construct an approximation of the inverse grid as ``inverse_grid = identity - displacement``.
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        This is not an exact inverse of the grid used to transform images, i.e. ``grid = identity + displacement``.
        Our assumption is that ``displacement * displacement`` is small and can be ignored.
        Large displacements would lead to large errors in the approximation.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        alpha (float or sequence of floats, optional): Magnitude of displacements. Default is 50.0.
        sigma (float or sequence of floats, optional): Smoothness of displacements. Default is 5.0.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
1048
            ``fill={tv_tensors.Image: 127, tv_tensors.Mask: 0}`` where ``Image`` will be filled with 127 and
1049
1050
1051
            ``Mask`` will be filled with 0.
    """

1052
1053
1054
1055
1056
1057
1058
    _v1_transform_cls = _transforms.ElasticTransform

    def __init__(
        self,
        alpha: Union[float, Sequence[float]] = 50.0,
        sigma: Union[float, Sequence[float]] = 5.0,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1059
        fill: Union[_FillType, Dict[Union[Type, str], _FillType]] = 0,
1060
1061
    ) -> None:
        super().__init__()
1062
1063
        self.alpha = _setup_number_or_seq(alpha, "alpha")
        self.sigma = _setup_number_or_seq(sigma, "sigma")
1064

1065
        self.interpolation = interpolation
1066
1067
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
1068
1069

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
1070
        size = list(query_size(flat_inputs))
1071
1072
1073
1074
1075
1076
1077

        dx = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[0] > 0.0:
            kx = int(8 * self.sigma[0] + 1)
            # if kernel size is even we have to make it odd
            if kx % 2 == 0:
                kx += 1
1078
            dx = self._call_kernel(F.gaussian_blur, dx, [kx, kx], list(self.sigma))
1079
1080
1081
1082
1083
1084
1085
1086
        dx = dx * self.alpha[0] / size[0]

        dy = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[1] > 0.0:
            ky = int(8 * self.sigma[1] + 1)
            # if kernel size is even we have to make it odd
            if ky % 2 == 0:
                ky += 1
1087
            dy = self._call_kernel(F.gaussian_blur, dy, [ky, ky], list(self.sigma))
1088
1089
1090
1091
1092
        dy = dy * self.alpha[1] / size[1]
        displacement = torch.concat([dx, dy], 1).permute([0, 2, 3, 1])  # 1 x H x W x 2
        return dict(displacement=displacement)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1093
        fill = _get_fill(self._fill, type(inpt))
1094
1095
        return self._call_kernel(
            F.elastic,
1096
1097
1098
1099
1100
1101
1102
1103
            inpt,
            **params,
            fill=fill,
            interpolation=self.interpolation,
        )


class RandomIoUCrop(Transform):
1104
1105
1106
    """[BETA] Random IoU crop transformation from
    `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

1107
    .. v2betastatus:: RandomIoUCrop transform
1108

1109
    This transformation requires an image or video data and ``tv_tensors.BoundingBoxes`` in the input.
1110
1111
1112

    .. warning::
        In order to properly remove the bounding boxes below the IoU threshold, `RandomIoUCrop`
1113
        must be followed by :class:`~torchvision.transforms.v2.SanitizeBoundingBoxes`, either immediately
1114
1115
        after or later in the transforms pipeline.

1116
1117
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_scale (float, optional): Minimum factors to scale the input size.
        max_scale (float, optional): Maximum factors to scale the input size.
        min_aspect_ratio (float, optional): Minimum aspect ratio for the cropped image or video.
        max_aspect_ratio (float, optional): Maximum aspect ratio for the cropped image or video.
        sampler_options (list of float, optional): List of minimal IoU (Jaccard) overlap between all the boxes and
            a cropped image or video. Default, ``None`` which corresponds to ``[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]``
        trials (int, optional): Number of trials to find a crop for a given value of minimal IoU (Jaccard) overlap.
            Default, 40.
    """

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
    def __init__(
        self,
        min_scale: float = 0.3,
        max_scale: float = 1.0,
        min_aspect_ratio: float = 0.5,
        max_aspect_ratio: float = 2.0,
        sampler_options: Optional[List[float]] = None,
        trials: int = 40,
    ):
        super().__init__()
        # Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        if sampler_options is None:
            sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
        self.options = sampler_options
        self.trials = trials

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if not (
1154
1155
            has_all(flat_inputs, tv_tensors.BoundingBoxes)
            and has_any(flat_inputs, PIL.Image.Image, tv_tensors.Image, is_pure_tensor)
1156
1157
1158
1159
1160
1161
1162
        ):
            raise TypeError(
                f"{type(self).__name__}() requires input sample to contain tensor or PIL images "
                "and bounding boxes. Sample can also contain masks."
            )

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
1163
        orig_h, orig_w = query_size(flat_inputs)
1164
        bboxes = get_bounding_boxes(flat_inputs)
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

        while True:
            # sample an option
            idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
            min_jaccard_overlap = self.options[idx]
            if min_jaccard_overlap >= 1.0:  # a value larger than 1 encodes the leave as-is option
                return dict()

            for _ in range(self.trials):
                # check the aspect ratio limitations
                r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
                new_w = int(orig_w * r[0])
                new_h = int(orig_h * r[1])
                aspect_ratio = new_w / new_h
                if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
                    continue

                # check for 0 area crops
                r = torch.rand(2)
                left = int((orig_w - new_w) * r[0])
                top = int((orig_h - new_h) * r[1])
                right = left + new_w
                bottom = top + new_h
                if left == right or top == bottom:
                    continue

                # check for any valid boxes with centers within the crop area
Nicolas Hug's avatar
Nicolas Hug committed
1192
                xyxy_bboxes = F.convert_bounding_box_format(
1193
1194
                    bboxes.as_subclass(torch.Tensor),
                    bboxes.format,
1195
                    tv_tensors.BoundingBoxFormat.XYXY,
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
                )
                cx = 0.5 * (xyxy_bboxes[..., 0] + xyxy_bboxes[..., 2])
                cy = 0.5 * (xyxy_bboxes[..., 1] + xyxy_bboxes[..., 3])
                is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
                if not is_within_crop_area.any():
                    continue

                # check at least 1 box with jaccard limitations
                xyxy_bboxes = xyxy_bboxes[is_within_crop_area]
                ious = box_iou(
                    xyxy_bboxes,
                    torch.tensor([[left, top, right, bottom]], dtype=xyxy_bboxes.dtype, device=xyxy_bboxes.device),
                )
                if ious.max() < min_jaccard_overlap:
                    continue

                return dict(top=top, left=left, height=new_h, width=new_w, is_within_crop_area=is_within_crop_area)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:

        if len(params) < 1:
            return inpt

1219
1220
1221
        output = self._call_kernel(
            F.crop, inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"]
        )
1222

1223
        if isinstance(output, tv_tensors.BoundingBoxes):
1224
            # We "mark" the invalid boxes as degenreate, and they can be
1225
            # removed by a later call to SanitizeBoundingBoxes()
1226
            output[~params["is_within_crop_area"]] = 0
1227
1228
1229
1230
1231

        return output


class ScaleJitter(Transform):
1232
1233
1234
    """[BETA] Perform Large Scale Jitter on the input according to
    `"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_.

1235
    .. v2betastatus:: ScaleJitter transform
1236

1237
1238
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        target_size (tuple of int): Target size. This parameter defines base scale for jittering,
            e.g. ``min(target_size[0] / width, target_size[1] / height)``.
        scale_range (tuple of float, optional): Minimum and maximum of the scale range. Default, ``(0.1, 2.0)``.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

1258
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
1259
1260
1261
1262
1263
1264
1265
1266
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

1267
1268
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
1269
1270
    """

1271
1272
1273
1274
1275
    def __init__(
        self,
        target_size: Tuple[int, int],
        scale_range: Tuple[float, float] = (0.1, 2.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1276
        antialias: Optional[bool] = True,
1277
1278
1279
1280
    ):
        super().__init__()
        self.target_size = target_size
        self.scale_range = scale_range
1281
        self.interpolation = interpolation
1282
1283
1284
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
1285
        orig_height, orig_width = query_size(flat_inputs)
1286
1287
1288
1289
1290
1291
1292
1293
1294

        scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
        r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale
        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1295
1296
1297
        return self._call_kernel(
            F.resize, inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias
        )
1298
1299
1300


class RandomShortestSize(Transform):
1301
1302
    """[BETA] Randomly resize the input.

1303
    .. v2betastatus:: RandomShortestSize transform
1304

1305
1306
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_size (int or sequence of int): Minimum spatial size. Single integer value or a sequence of integer values.
        max_size (int, optional): Maximum spatial size. Default, None.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

1325
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
1326
1327
1328
1329
1330
1331
1332
1333
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

1334
1335
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
1336
1337
    """

1338
1339
1340
1341
1342
    def __init__(
        self,
        min_size: Union[List[int], Tuple[int], int],
        max_size: Optional[int] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1343
        antialias: Optional[bool] = True,
1344
1345
1346
1347
    ):
        super().__init__()
        self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
        self.max_size = max_size
1348
        self.interpolation = interpolation
1349
1350
1351
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
Philip Meier's avatar
Philip Meier committed
1352
        orig_height, orig_width = query_size(flat_inputs)
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

        min_size = self.min_size[int(torch.randint(len(self.min_size), ()))]
        r = min_size / min(orig_height, orig_width)
        if self.max_size is not None:
            r = min(r, self.max_size / max(orig_height, orig_width))

        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1365
1366
1367
        return self._call_kernel(
            F.resize, inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias
        )
1368
1369
1370


class RandomResize(Transform):
1371
1372
    """[BETA] Randomly resize the input.

1373
    .. v2betastatus:: RandomResize transform
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385

    This transformation can be used together with ``RandomCrop`` as data augmentations to train
    models on image segmentation task.

    Output spatial size is randomly sampled from the interval ``[min_size, max_size]``:

    .. code-block:: python

        size = uniform_sample(min_size, max_size)
        output_width = size
        output_height = size

1386
1387
    If the input is a :class:`torch.Tensor` or a ``TVTensor`` (e.g. :class:`~torchvision.tv_tensors.Image`,
    :class:`~torchvision.tv_tensors.Video`, :class:`~torchvision.tv_tensors.BoundingBoxes` etc.)
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_size (int): Minimum output size for random sampling
        max_size (int): Maximum output size for random sampling
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

1406
            - ``True`` (default): will apply antialiasing for bilinear or bicubic modes.
1407
1408
1409
1410
1411
1412
1413
1414
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

1415
1416
            The default value changed from ``None`` to ``True`` in
            v0.17, for the PIL and Tensor backends to be consistent.
1417
1418
    """

1419
1420
1421
1422
1423
    def __init__(
        self,
        min_size: int,
        max_size: int,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1424
        antialias: Optional[bool] = True,
1425
1426
1427
1428
    ) -> None:
        super().__init__()
        self.min_size = min_size
        self.max_size = max_size
1429
        self.interpolation = interpolation
1430
1431
1432
1433
1434
1435
1436
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        size = int(torch.randint(self.min_size, self.max_size, ()))
        return dict(size=[size])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1437
1438
1439
        return self._call_kernel(
            F.resize, inpt, params["size"], interpolation=self.interpolation, antialias=self.antialias
        )