_geometry.py 50 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import math
import numbers
import warnings
from typing import Any, cast, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union

import PIL.Image
import torch

from torchvision import datapoints, transforms as _transforms
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import _get_perspective_coeffs
from torchvision.transforms.v2 import functional as F, InterpolationMode, Transform
from torchvision.transforms.v2.functional._geometry import _check_interpolation

from ._transform import _RandomApplyTransform
from ._utils import (
    _check_padding_arg,
    _check_padding_mode_arg,
    _check_sequence_input,
    _setup_angle,
    _setup_fill_arg,
    _setup_float_or_seq,
    _setup_size,
)
from .utils import has_all, has_any, is_simple_tensor, query_bounding_box, query_spatial_size


class RandomHorizontalFlip(_RandomApplyTransform):
29
30
31
32
33
34
35
36
37
38
39
40
    """[BETA] Horizontally flip the given image/box/mask randomly with a given probability.

    .. betastatus:: RandomHorizontalFlip transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

41
42
43
44
45
46
47
    _v1_transform_cls = _transforms.RandomHorizontalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.horizontal_flip(inpt)


class RandomVerticalFlip(_RandomApplyTransform):
48
49
50
51
52
53
54
55
56
57
58
59
    """[BETA] Vertically flip the given image/box/mask randomly with a given probability.

    .. betastatus:: RandomVerticalFlip transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

60
61
62
63
64
65
66
    _v1_transform_cls = _transforms.RandomVerticalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.vertical_flip(inpt)


class Resize(Transform):
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """[BETA] Resize the input image/box/mask to the given size.

    .. betastatus:: Resize transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ``size`` might be overruled, i.e. the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    _v1_transform_cls = _transforms.Resize

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        max_size: Optional[int] = None,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()

        if isinstance(size, int):
            size = [size]
        elif isinstance(size, (list, tuple)) and len(size) in {1, 2}:
            size = list(size)
        else:
            raise ValueError(
                f"size can either be an integer or a list or tuple of one or two integers, " f"but got {size} instead."
            )
        self.size = size

        self.interpolation = _check_interpolation(interpolation)
        self.max_size = max_size
        self.antialias = antialias

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(
            inpt,
            self.size,
            interpolation=self.interpolation,
            max_size=self.max_size,
            antialias=self.antialias,
        )


class CenterCrop(Transform):
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    """[BETA] Crops the given image/box/mask at the center.

    .. betastatus:: CenterCrop transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
    """

173
174
175
176
177
178
179
180
181
182
183
    _v1_transform_cls = _transforms.CenterCrop

    def __init__(self, size: Union[int, Sequence[int]]):
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.center_crop(inpt, output_size=self.size)


class RandomResizedCrop(Transform):
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    """[BETA] Crop a random portion of image/box/mask and resize it to a given size.

    .. betastatus:: RandomResizedCrop transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions

    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.

    Args:
        size (int or sequence): expected output size of the crop, for each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    _v1_transform_cls = _transforms.RandomResizedCrop

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        scale: Tuple[float, float] = (0.08, 1.0),
        ratio: Tuple[float, float] = (3.0 / 4.0, 4.0 / 3.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if not isinstance(scale, Sequence):
            raise TypeError("Scale should be a sequence")
        scale = cast(Tuple[float, float], scale)
        if not isinstance(ratio, Sequence):
            raise TypeError("Ratio should be a sequence")
        ratio = cast(Tuple[float, float], ratio)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("Scale and ratio should be of kind (min, max)")

        self.scale = scale
        self.ratio = ratio
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

        self._log_ratio = torch.log(torch.tensor(self.ratio))

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)
        area = height * width

        log_ratio = self._log_ratio
        for _ in range(10):
            target_area = area * torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(
                    log_ratio[0],  # type: ignore[arg-type]
                    log_ratio[1],  # type: ignore[arg-type]
                )
            ).item()

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
                break
        else:
            # Fallback to central crop
            in_ratio = float(width) / float(height)
            if in_ratio < min(self.ratio):
                w = width
                h = int(round(w / min(self.ratio)))
            elif in_ratio > max(self.ratio):
                h = height
                w = int(round(h * max(self.ratio)))
            else:  # whole image
                w = width
                h = height
            i = (height - h) // 2
            j = (width - w) // 2

        return dict(top=i, left=j, height=h, width=w)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resized_crop(
            inpt, **params, size=self.size, interpolation=self.interpolation, antialias=self.antialias
        )


Philip Meier's avatar
Philip Meier committed
304
ImageOrVideoTypeJIT = Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]
305
306
307


class FiveCrop(Transform):
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    """[BETA] Crop the given image/box/mask into four corners and the central crop.

    .. betastatus:: FiveCrop transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    Example:
        >>> class BatchMultiCrop(transforms.Transform):
        ...     def forward(self, sample: Tuple[Tuple[Union[datapoints.Image, datapoints.Video], ...], int]):
        ...         images_or_videos, labels = sample
        ...         batch_size = len(images_or_videos)
        ...         image_or_video = images_or_videos[0]
        ...         images_or_videos = image_or_video.wrap_like(image_or_video, torch.stack(images_or_videos))
        ...         labels = torch.full((batch_size,), label, device=images_or_videos.device)
        ...         return images_or_videos, labels
        ...
        >>> image = datapoints.Image(torch.rand(3, 256, 256))
        >>> label = 3
        >>> transform = transforms.Compose([transforms.FiveCrop(224), BatchMultiCrop()])
        >>> images, labels = transform(image, label)
        >>> images.shape
        torch.Size([5, 3, 224, 224])
        >>> labels
        tensor([3, 3, 3, 3, 3])
    """

    _v1_transform_cls = _transforms.FiveCrop

    _transformed_types = (
        datapoints.Image,
        PIL.Image.Image,
        is_simple_tensor,
        datapoints.Video,
    )

    def __init__(self, size: Union[int, Sequence[int]]) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

    def _transform(
        self, inpt: ImageOrVideoTypeJIT, params: Dict[str, Any]
    ) -> Tuple[ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT]:
        return F.five_crop(inpt, self.size)

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if has_any(flat_inputs, datapoints.BoundingBox, datapoints.Mask):
            raise TypeError(f"BoundingBox'es and Mask's are not supported by {type(self).__name__}()")


class TenCrop(Transform):
370
371
372
373
374
375
376
377
378
    """[BETA] Crop the given image/box/mask into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).

    .. betastatus:: TenCrop transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions.

379
    See :class:`~torchvision.transforms.v2.FiveCrop` for an example.
380
381
382
383
384
385
386
387
388
389
390

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
        vertical_flip (bool): Use vertical flipping instead of horizontal
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    """

    _v1_transform_cls = _transforms.TenCrop

    _transformed_types = (
        datapoints.Image,
        PIL.Image.Image,
        is_simple_tensor,
        datapoints.Video,
    )

    def __init__(self, size: Union[int, Sequence[int]], vertical_flip: bool = False) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
        self.vertical_flip = vertical_flip

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if has_any(flat_inputs, datapoints.BoundingBox, datapoints.Mask):
            raise TypeError(f"BoundingBox'es and Mask's are not supported by {type(self).__name__}()")

    def _transform(
Philip Meier's avatar
Philip Meier committed
412
        self, inpt: Union[datapoints._ImageType, datapoints._VideoType], params: Dict[str, Any]
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    ) -> Tuple[
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
    ]:
        return F.ten_crop(inpt, self.size, vertical_flip=self.vertical_flip)


class Pad(Transform):
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    """[BETA] Pad the given image/box/mask on all sides with the given "pad" value.

    .. betastatus:: Pad transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant

    Args:
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or tuple value is supported for PIL Image.
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

469
470
471
472
473
474
    _v1_transform_cls = _transforms.Pad

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
475
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
476
477
478
479
480
481

        return params

    def __init__(
        self,
        padding: Union[int, Sequence[int]],
Philip Meier's avatar
Philip Meier committed
482
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
483
484
485
486
487
488
489
490
491
492
493
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        _check_padding_arg(padding)
        _check_padding_mode_arg(padding_mode)

        # This cast does Sequence[int] -> List[int] and is required to make mypy happy
        if not isinstance(padding, int):
            padding = list(padding)
        self.padding = padding
494
495
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
496
497
498
        self.padding_mode = padding_mode

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
499
        fill = self._fill[type(inpt)]
500
501
502
503
504
505
        return F.pad(inpt, padding=self.padding, fill=fill, padding_mode=self.padding_mode)  # type: ignore[arg-type]


class RandomZoomOut(_RandomApplyTransform):
    def __init__(
        self,
Philip Meier's avatar
Philip Meier committed
506
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
507
508
509
510
511
        side_range: Sequence[float] = (1.0, 4.0),
        p: float = 0.5,
    ) -> None:
        super().__init__(p=p)

512
513
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537

        _check_sequence_input(side_range, "side_range", req_sizes=(2,))

        self.side_range = side_range
        if side_range[0] < 1.0 or side_range[0] > side_range[1]:
            raise ValueError(f"Invalid canvas side range provided {side_range}.")

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_h, orig_w = query_spatial_size(flat_inputs)

        r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
        canvas_width = int(orig_w * r)
        canvas_height = int(orig_h * r)

        r = torch.rand(2)
        left = int((canvas_width - orig_w) * r[0])
        top = int((canvas_height - orig_h) * r[1])
        right = canvas_width - (left + orig_w)
        bottom = canvas_height - (top + orig_h)
        padding = [left, top, right, bottom]

        return dict(padding=padding)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
538
        fill = self._fill[type(inpt)]
539
540
541
542
        return F.pad(inpt, **params, fill=fill)


class RandomRotation(Transform):
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    """[BETA] Rotate the image/box/mask by angle.

    .. betastatus:: RandomRotation transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

571
572
573
574
575
576
577
578
    _v1_transform_cls = _transforms.RandomRotation

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
        expand: bool = False,
        center: Optional[List[float]] = None,
579
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
580
581
582
583
584
585
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
        self.interpolation = _check_interpolation(interpolation)
        self.expand = expand

586
587
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
588
589
590
591
592
593
594
595
596
597
598

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        return dict(angle=angle)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
599
        fill = self._fill[type(inpt)]
600
601
602
603
604
605
606
607
608
609
610
        return F.rotate(
            inpt,
            **params,
            interpolation=self.interpolation,
            expand=self.expand,
            center=self.center,
            fill=fill,
        )


class RandomAffine(Transform):
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    """[BETA] Random affine transformation of the image/box/mask keeping center invariant.

    .. betastatus:: RandomAffine transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or number, optional): Range of degrees to select from.
            If shear is a number, a shear parallel to the x-axis in the range (-shear, +shear)
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x-axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
            an x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

647
648
649
650
651
652
653
654
655
    _v1_transform_cls = _transforms.RandomAffine

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        translate: Optional[Sequence[float]] = None,
        scale: Optional[Sequence[float]] = None,
        shear: Optional[Union[int, float, Sequence[float]]] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
656
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
        center: Optional[List[float]] = None,
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2,))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate
        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2,))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        self.interpolation = _check_interpolation(interpolation)
680
681
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)

        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        if self.translate is not None:
            max_dx = float(self.translate[0] * width)
            max_dy = float(self.translate[1] * height)
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translate = (tx, ty)
        else:
            translate = (0, 0)

        if self.scale is not None:
            scale = torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
        else:
            scale = 1.0

        shear_x = shear_y = 0.0
        if self.shear is not None:
            shear_x = torch.empty(1).uniform_(self.shear[0], self.shear[1]).item()
            if len(self.shear) == 4:
                shear_y = torch.empty(1).uniform_(self.shear[2], self.shear[3]).item()

        shear = (shear_x, shear_y)
        return dict(angle=angle, translate=translate, scale=scale, shear=shear)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
716
        fill = self._fill[type(inpt)]
717
718
719
720
721
722
723
724
725
726
        return F.affine(
            inpt,
            **params,
            interpolation=self.interpolation,
            fill=fill,
            center=self.center,
        )


class RandomCrop(Transform):
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    """[BETA] Crop the given image/box/mask at a random location.

    .. betastatus:: RandomCrop transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
        pad_if_needed (boolean): It will pad the image if smaller than the
            desired size to avoid raising an exception. Since cropping is done
            after padding, the padding seems to be done at a random offset.
        fill (number or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or tuple value is supported for PIL Image.
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

773
774
775
776
777
778
    _v1_transform_cls = _transforms.RandomCrop

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
779
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
780
781
782
783
784
785
786
787
788
789
790
791
792
793

        padding = self.padding
        if padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = padding
            padding = [pad_left, pad_top, pad_right, pad_bottom]
        params["padding"] = padding

        return params

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        padding: Optional[Union[int, Sequence[int]]] = None,
        pad_if_needed: bool = False,
Philip Meier's avatar
Philip Meier committed
794
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
795
796
797
798
799
800
801
802
803
804
805
806
807
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if pad_if_needed or padding is not None:
            if padding is not None:
                _check_padding_arg(padding)
            _check_padding_mode_arg(padding_mode)

        self.padding = F._geometry._parse_pad_padding(padding) if padding else None  # type: ignore[arg-type]
        self.pad_if_needed = pad_if_needed
808
809
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
        self.padding_mode = padding_mode

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        padded_height, padded_width = query_spatial_size(flat_inputs)

        if self.padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = self.padding
            padded_height += pad_top + pad_bottom
            padded_width += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        cropped_height, cropped_width = self.size

        if self.pad_if_needed:
            if padded_height < cropped_height:
                diff = cropped_height - padded_height

                pad_top += diff
                pad_bottom += diff
                padded_height += 2 * diff

            if padded_width < cropped_width:
                diff = cropped_width - padded_width

                pad_left += diff
                pad_right += diff
                padded_width += 2 * diff

        if padded_height < cropped_height or padded_width < cropped_width:
            raise ValueError(
                f"Required crop size {(cropped_height, cropped_width)} is larger than "
                f"{'padded ' if self.padding is not None else ''}input image size {(padded_height, padded_width)}."
            )

        # We need a different order here than we have in self.padding since this padding will be parsed again in `F.pad`
        padding = [pad_left, pad_top, pad_right, pad_bottom]
        needs_pad = any(padding)

        needs_vert_crop, top = (
            (True, int(torch.randint(0, padded_height - cropped_height + 1, size=())))
            if padded_height > cropped_height
            else (False, 0)
        )
        needs_horz_crop, left = (
            (True, int(torch.randint(0, padded_width - cropped_width + 1, size=())))
            if padded_width > cropped_width
            else (False, 0)
        )

        return dict(
            needs_crop=needs_vert_crop or needs_horz_crop,
            top=top,
            left=left,
            height=cropped_height,
            width=cropped_width,
            needs_pad=needs_pad,
            padding=padding,
        )

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if params["needs_pad"]:
872
            fill = self._fill[type(inpt)]
873
874
875
876
877
878
879
880
881
            inpt = F.pad(inpt, padding=params["padding"], fill=fill, padding_mode=self.padding_mode)

        if params["needs_crop"]:
            inpt = F.crop(inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"])

        return inpt


class RandomPerspective(_RandomApplyTransform):
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    """[BETA] Performs a random perspective transformation of the given image/box/mask with a given probability.

    .. betastatus:: RandomPerspective transform

    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
    """

901
902
903
904
905
906
    _v1_transform_cls = _transforms.RandomPerspective

    def __init__(
        self,
        distortion_scale: float = 0.5,
        p: float = 0.5,
907
908
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
909
910
911
912
913
914
915
916
    ) -> None:
        super().__init__(p=p)

        if not (0 <= distortion_scale <= 1):
            raise ValueError("Argument distortion_scale value should be between 0 and 1")

        self.distortion_scale = distortion_scale
        self.interpolation = _check_interpolation(interpolation)
917
918
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)

        distortion_scale = self.distortion_scale

        half_height = height // 2
        half_width = width // 2
        bound_height = int(distortion_scale * half_height) + 1
        bound_width = int(distortion_scale * half_width) + 1
        topleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        topright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        botright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        botleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]
        perspective_coeffs = _get_perspective_coeffs(startpoints, endpoints)
        return dict(coefficients=perspective_coeffs)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
951
        fill = self._fill[type(inpt)]
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
        return F.perspective(
            inpt,
            None,
            None,
            fill=fill,
            interpolation=self.interpolation,
            **params,
        )


class ElasticTransform(Transform):
    _v1_transform_cls = _transforms.ElasticTransform

    def __init__(
        self,
        alpha: Union[float, Sequence[float]] = 50.0,
        sigma: Union[float, Sequence[float]] = 5.0,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
970
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
971
972
973
974
975
976
    ) -> None:
        super().__init__()
        self.alpha = _setup_float_or_seq(alpha, "alpha", 2)
        self.sigma = _setup_float_or_seq(sigma, "sigma", 2)

        self.interpolation = _check_interpolation(interpolation)
977
978
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        size = list(query_spatial_size(flat_inputs))

        dx = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[0] > 0.0:
            kx = int(8 * self.sigma[0] + 1)
            # if kernel size is even we have to make it odd
            if kx % 2 == 0:
                kx += 1
            dx = F.gaussian_blur(dx, [kx, kx], list(self.sigma))
        dx = dx * self.alpha[0] / size[0]

        dy = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[1] > 0.0:
            ky = int(8 * self.sigma[1] + 1)
            # if kernel size is even we have to make it odd
            if ky % 2 == 0:
                ky += 1
            dy = F.gaussian_blur(dy, [ky, ky], list(self.sigma))
        dy = dy * self.alpha[1] / size[1]
        displacement = torch.concat([dx, dy], 1).permute([0, 2, 3, 1])  # 1 x H x W x 2
        return dict(displacement=displacement)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1004
        fill = self._fill[type(inpt)]
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        return F.elastic(
            inpt,
            **params,
            fill=fill,
            interpolation=self.interpolation,
        )


class RandomIoUCrop(Transform):
    def __init__(
        self,
        min_scale: float = 0.3,
        max_scale: float = 1.0,
        min_aspect_ratio: float = 0.5,
        max_aspect_ratio: float = 2.0,
        sampler_options: Optional[List[float]] = None,
        trials: int = 40,
    ):
        super().__init__()
        # Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        if sampler_options is None:
            sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
        self.options = sampler_options
        self.trials = trials

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if not (
            has_all(flat_inputs, datapoints.BoundingBox)
            and has_any(flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor)
        ):
            raise TypeError(
                f"{type(self).__name__}() requires input sample to contain tensor or PIL images "
                "and bounding boxes. Sample can also contain masks."
            )

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_h, orig_w = query_spatial_size(flat_inputs)
        bboxes = query_bounding_box(flat_inputs)

        while True:
            # sample an option
            idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
            min_jaccard_overlap = self.options[idx]
            if min_jaccard_overlap >= 1.0:  # a value larger than 1 encodes the leave as-is option
                return dict()

            for _ in range(self.trials):
                # check the aspect ratio limitations
                r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
                new_w = int(orig_w * r[0])
                new_h = int(orig_h * r[1])
                aspect_ratio = new_w / new_h
                if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
                    continue

                # check for 0 area crops
                r = torch.rand(2)
                left = int((orig_w - new_w) * r[0])
                top = int((orig_h - new_h) * r[1])
                right = left + new_w
                bottom = top + new_h
                if left == right or top == bottom:
                    continue

                # check for any valid boxes with centers within the crop area
                xyxy_bboxes = F.convert_format_bounding_box(
                    bboxes.as_subclass(torch.Tensor), bboxes.format, datapoints.BoundingBoxFormat.XYXY
                )
                cx = 0.5 * (xyxy_bboxes[..., 0] + xyxy_bboxes[..., 2])
                cy = 0.5 * (xyxy_bboxes[..., 1] + xyxy_bboxes[..., 3])
                is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
                if not is_within_crop_area.any():
                    continue

                # check at least 1 box with jaccard limitations
                xyxy_bboxes = xyxy_bboxes[is_within_crop_area]
                ious = box_iou(
                    xyxy_bboxes,
                    torch.tensor([[left, top, right, bottom]], dtype=xyxy_bboxes.dtype, device=xyxy_bboxes.device),
                )
                if ious.max() < min_jaccard_overlap:
                    continue

                return dict(top=top, left=left, height=new_h, width=new_w, is_within_crop_area=is_within_crop_area)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:

        if len(params) < 1:
            return inpt

        output = F.crop(inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"])

        if isinstance(output, datapoints.BoundingBox):
1102
1103
1104
            # We "mark" the invalid boxes as degenreate, and they can be
            # removed by a later call to SanitizeBoundingBoxes()
            output[~params["is_within_crop_area"]] = 0
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

        return output


class ScaleJitter(Transform):
    def __init__(
        self,
        target_size: Tuple[int, int],
        scale_range: Tuple[float, float] = (0.1, 2.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ):
        super().__init__()
        self.target_size = target_size
        self.scale_range = scale_range
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_height, orig_width = query_spatial_size(flat_inputs)

        scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
        r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale
        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias)


class RandomShortestSize(Transform):
    def __init__(
        self,
        min_size: Union[List[int], Tuple[int], int],
        max_size: Optional[int] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ):
        super().__init__()
        self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
        self.max_size = max_size
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_height, orig_width = query_spatial_size(flat_inputs)

        min_size = self.min_size[int(torch.randint(len(self.min_size), ()))]
        r = min_size / min(orig_height, orig_width)
        if self.max_size is not None:
            r = min(r, self.max_size / max(orig_height, orig_width))

        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias)


class RandomResize(Transform):
    def __init__(
        self,
        min_size: int,
        max_size: int,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()
        self.min_size = min_size
        self.max_size = max_size
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        size = int(torch.randint(self.min_size, self.max_size, ()))
        return dict(size=[size])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, params["size"], interpolation=self.interpolation, antialias=self.antialias)