_geometry.py 66.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import math
import numbers
import warnings
from typing import Any, cast, Dict, List, Literal, Optional, Sequence, Tuple, Type, Union

import PIL.Image
import torch

from torchvision import datapoints, transforms as _transforms
from torchvision.ops.boxes import box_iou
from torchvision.transforms.functional import _get_perspective_coeffs
from torchvision.transforms.v2 import functional as F, InterpolationMode, Transform
from torchvision.transforms.v2.functional._geometry import _check_interpolation

from ._transform import _RandomApplyTransform
from ._utils import (
    _check_padding_arg,
    _check_padding_mode_arg,
    _check_sequence_input,
    _setup_angle,
    _setup_fill_arg,
    _setup_float_or_seq,
    _setup_size,
)
from .utils import has_all, has_any, is_simple_tensor, query_bounding_box, query_spatial_size


class RandomHorizontalFlip(_RandomApplyTransform):
29
    """[BETA] Horizontally flip the input with a given probability.
30

31
    .. v2betastatus:: RandomHorizontalFlip transform
32

33
34
35
36
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
37
38

    Args:
39
        p (float, optional): probability of the input being flipped. Default value is 0.5
40
41
    """

42
43
44
45
46
47
48
    _v1_transform_cls = _transforms.RandomHorizontalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.horizontal_flip(inpt)


class RandomVerticalFlip(_RandomApplyTransform):
49
    """[BETA] Vertically flip the input with a given probability.
50

51
    .. v2betastatus:: RandomVerticalFlip transform
52

53
54
55
56
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
57
58

    Args:
59
        p (float, optional): probability of the input being flipped. Default value is 0.5
60
61
    """

62
63
64
65
66
67
68
    _v1_transform_cls = _transforms.RandomVerticalFlip

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.vertical_flip(inpt)


class Resize(Transform):
69
    """[BETA] Resize the input to the given size.
70

71
    .. v2betastatus:: Resize transform
72

73
74
75
76
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
94
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
95
96
97
98
99
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        max_size (int, optional): The maximum allowed for the longer edge of
100
            the resized image. If the longer edge of the image is greater
Nicolas Hug's avatar
Nicolas Hug committed
101
            than ``max_size`` after being resized according to ``size``,
102
103
            ``size`` will be overruled so that the longer edge is equal to
            ``max_size``.
Nicolas Hug's avatar
Nicolas Hug committed
104
            As a result, the smaller edge may be shorter than ``size``. This
105
106
            is only supported if ``size`` is an int (or a sequence of length
            1 in torchscript mode).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    _v1_transform_cls = _transforms.Resize

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        max_size: Optional[int] = None,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()

        if isinstance(size, int):
            size = [size]
        elif isinstance(size, (list, tuple)) and len(size) in {1, 2}:
            size = list(size)
        else:
            raise ValueError(
                f"size can either be an integer or a list or tuple of one or two integers, " f"but got {size} instead."
            )
        self.size = size

        self.interpolation = _check_interpolation(interpolation)
        self.max_size = max_size
        self.antialias = antialias

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(
            inpt,
            self.size,
            interpolation=self.interpolation,
            max_size=self.max_size,
            antialias=self.antialias,
        )


class CenterCrop(Transform):
163
    """[BETA] Crop the input at the center.
164

165
    .. v2betastatus:: CenterCrop transform
166

167
168
169
170
171
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

172
173
174
175
176
177
178
179
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
    """

180
181
182
183
184
185
186
187
188
189
190
    _v1_transform_cls = _transforms.CenterCrop

    def __init__(self, size: Union[int, Sequence[int]]):
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.center_crop(inpt, output_size=self.size)


class RandomResizedCrop(Transform):
191
    """[BETA] Crop a random portion of the input and resize it to a given size.
192

193
    .. v2betastatus:: RandomResizedCrop transform
194

195
196
197
198
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
199

200
    A crop of the original input is made: the crop has a random area (H * W)
201
202
203
204
205
206
207
208
209
210
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.

    Args:
        size (int or sequence): expected output size of the crop, for each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
211
        scale (tuple of float, optional): Specifies the lower and upper bounds for the random area of the crop,
212
            before resizing. The scale is defined with respect to the area of the original image.
213
        ratio (tuple of float, optional): lower and upper bounds for the random aspect ratio of the crop, before
214
            resizing.
215
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    _v1_transform_cls = _transforms.RandomResizedCrop

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        scale: Tuple[float, float] = (0.08, 1.0),
        ratio: Tuple[float, float] = (3.0 / 4.0, 4.0 / 3.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if not isinstance(scale, Sequence):
            raise TypeError("Scale should be a sequence")
        scale = cast(Tuple[float, float], scale)
        if not isinstance(ratio, Sequence):
            raise TypeError("Ratio should be a sequence")
        ratio = cast(Tuple[float, float], ratio)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("Scale and ratio should be of kind (min, max)")

        self.scale = scale
        self.ratio = ratio
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

        self._log_ratio = torch.log(torch.tensor(self.ratio))

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)
        area = height * width

        log_ratio = self._log_ratio
        for _ in range(10):
            target_area = area * torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(
                    log_ratio[0],  # type: ignore[arg-type]
                    log_ratio[1],  # type: ignore[arg-type]
                )
            ).item()

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
                break
        else:
            # Fallback to central crop
            in_ratio = float(width) / float(height)
            if in_ratio < min(self.ratio):
                w = width
                h = int(round(w / min(self.ratio)))
            elif in_ratio > max(self.ratio):
                h = height
                w = int(round(h * max(self.ratio)))
            else:  # whole image
                w = width
                h = height
            i = (height - h) // 2
            j = (width - w) // 2

        return dict(top=i, left=j, height=h, width=w)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resized_crop(
            inpt, **params, size=self.size, interpolation=self.interpolation, antialias=self.antialias
        )


Philip Meier's avatar
Philip Meier committed
313
ImageOrVideoTypeJIT = Union[datapoints._ImageTypeJIT, datapoints._VideoTypeJIT]
314
315
316


class FiveCrop(Transform):
317
    """[BETA] Crop the image or video into four corners and the central crop.
318

319
    .. v2betastatus:: FiveCrop transform
320

321
322
323
    If the input is a :class:`torch.Tensor` or a :class:`~torchvision.datapoints.Image` or a
    :class:`~torchvision.datapoints.Video` it can have arbitrary number of leading batch dimensions.
    For example, the image can have ``[..., C, H, W]`` shape.
324
325
326
327
328
329
330
331
332
333
334

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    Example:
        >>> class BatchMultiCrop(transforms.Transform):
        ...     def forward(self, sample: Tuple[Tuple[Union[datapoints.Image, datapoints.Video], ...], int]):
        ...         images_or_videos, labels = sample
        ...         batch_size = len(images_or_videos)
        ...         image_or_video = images_or_videos[0]
        ...         images_or_videos = image_or_video.wrap_like(image_or_video, torch.stack(images_or_videos))
        ...         labels = torch.full((batch_size,), label, device=images_or_videos.device)
        ...         return images_or_videos, labels
        ...
        >>> image = datapoints.Image(torch.rand(3, 256, 256))
        >>> label = 3
        >>> transform = transforms.Compose([transforms.FiveCrop(224), BatchMultiCrop()])
        >>> images, labels = transform(image, label)
        >>> images.shape
        torch.Size([5, 3, 224, 224])
        >>> labels
        tensor([3, 3, 3, 3, 3])
    """

    _v1_transform_cls = _transforms.FiveCrop

    _transformed_types = (
        datapoints.Image,
        PIL.Image.Image,
        is_simple_tensor,
        datapoints.Video,
    )

    def __init__(self, size: Union[int, Sequence[int]]) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

    def _transform(
        self, inpt: ImageOrVideoTypeJIT, params: Dict[str, Any]
    ) -> Tuple[ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT, ImageOrVideoTypeJIT]:
        return F.five_crop(inpt, self.size)

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if has_any(flat_inputs, datapoints.BoundingBox, datapoints.Mask):
            raise TypeError(f"BoundingBox'es and Mask's are not supported by {type(self).__name__}()")


class TenCrop(Transform):
379
    """[BETA] Crop the image or video into four corners and the central crop plus the flipped version of
380
381
    these (horizontal flipping is used by default).

382
    .. v2betastatus:: TenCrop transform
383

384
385
386
    If the input is a :class:`torch.Tensor` or a :class:`~torchvision.datapoints.Image` or a
    :class:`~torchvision.datapoints.Video` it can have arbitrary number of leading batch dimensions.
    For example, the image can have ``[..., C, H, W]`` shape.
387

388
    See :class:`~torchvision.transforms.v2.FiveCrop` for an example.
389
390
391
392
393
394
395
396
397
398

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
399
        vertical_flip (bool, optional): Use vertical flipping instead of horizontal
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    """

    _v1_transform_cls = _transforms.TenCrop

    _transformed_types = (
        datapoints.Image,
        PIL.Image.Image,
        is_simple_tensor,
        datapoints.Video,
    )

    def __init__(self, size: Union[int, Sequence[int]], vertical_flip: bool = False) -> None:
        super().__init__()
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
        self.vertical_flip = vertical_flip

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if has_any(flat_inputs, datapoints.BoundingBox, datapoints.Mask):
            raise TypeError(f"BoundingBox'es and Mask's are not supported by {type(self).__name__}()")

    def _transform(
Philip Meier's avatar
Philip Meier committed
421
        self, inpt: Union[datapoints._ImageType, datapoints._VideoType], params: Dict[str, Any]
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    ) -> Tuple[
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
        ImageOrVideoTypeJIT,
    ]:
        return F.ten_crop(inpt, self.size, vertical_flip=self.vertical_flip)


class Pad(Transform):
438
    """[BETA] Pad the input on all sides with the given "pad" value.
439

440
    .. v2betastatus:: Pad transform
441

442
443
444
445
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
446
447
448
449
450
451
452
453
454
455

    Args:
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
456
457
458
459
460
461
462
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
        padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is "constant".
463
464
465
466
467
468
469
470
471
472
473
474
475
476

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

477
478
479
480
481
482
    _v1_transform_cls = _transforms.Pad

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
483
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
484
485
486
487
488
489

        return params

    def __init__(
        self,
        padding: Union[int, Sequence[int]],
Philip Meier's avatar
Philip Meier committed
490
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
491
492
493
494
495
496
497
498
499
500
501
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        _check_padding_arg(padding)
        _check_padding_mode_arg(padding_mode)

        # This cast does Sequence[int] -> List[int] and is required to make mypy happy
        if not isinstance(padding, int):
            padding = list(padding)
        self.padding = padding
502
503
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
504
505
506
        self.padding_mode = padding_mode

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
507
        fill = self._fill[type(inpt)]
508
509
510
511
        return F.pad(inpt, padding=self.padding, fill=fill, padding_mode=self.padding_mode)  # type: ignore[arg-type]


class RandomZoomOut(_RandomApplyTransform):
512
513
514
    """[BETA] "Zoom out" transformation from
    `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

515
    .. v2betastatus:: RandomZoomOut transform
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

    This transformation randomly pads images, videos, bounding boxes and masks creating a zoom out effect.
    Output spatial size is randomly sampled from original size up to a maximum size configured
    with ``side_range`` parameter:

    .. code-block:: python

        r = uniform_sample(side_range[0], side_range[1])
        output_width = input_width * r
        output_height = input_height * r

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
        side_range (sequence of floats, optional): tuple of two floats defines minimum and maximum factors to
            scale the input size.
540
        p (float, optional): probability that the zoom operation will be performed.
541
542
    """

543
544
    def __init__(
        self,
Philip Meier's avatar
Philip Meier committed
545
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
546
547
548
549
550
        side_range: Sequence[float] = (1.0, 4.0),
        p: float = 0.5,
    ) -> None:
        super().__init__(p=p)

551
552
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

        _check_sequence_input(side_range, "side_range", req_sizes=(2,))

        self.side_range = side_range
        if side_range[0] < 1.0 or side_range[0] > side_range[1]:
            raise ValueError(f"Invalid canvas side range provided {side_range}.")

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_h, orig_w = query_spatial_size(flat_inputs)

        r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0])
        canvas_width = int(orig_w * r)
        canvas_height = int(orig_h * r)

        r = torch.rand(2)
        left = int((canvas_width - orig_w) * r[0])
        top = int((canvas_height - orig_h) * r[1])
        right = canvas_width - (left + orig_w)
        bottom = canvas_height - (top + orig_h)
        padding = [left, top, right, bottom]

        return dict(padding=padding)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
577
        fill = self._fill[type(inpt)]
578
579
580
581
        return F.pad(inpt, **params, fill=fill)


class RandomRotation(Transform):
582
    """[BETA] Rotate the input by angle.
583

584
    .. v2betastatus:: RandomRotation transform
585

586
587
588
589
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
590
591
592
593
594

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
595
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
596
597
598
599
600
601
602
603
604
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
605
606
607
608
609
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
610
611
612
613
614

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

615
616
617
618
619
620
621
622
    _v1_transform_cls = _transforms.RandomRotation

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
        expand: bool = False,
        center: Optional[List[float]] = None,
623
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
624
625
626
627
628
629
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
        self.interpolation = _check_interpolation(interpolation)
        self.expand = expand

630
631
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
632
633
634
635
636
637
638
639
640
641
642

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        return dict(angle=angle)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
643
        fill = self._fill[type(inpt)]
644
645
646
647
648
649
650
651
652
653
654
        return F.rotate(
            inpt,
            **params,
            interpolation=self.interpolation,
            expand=self.expand,
            center=self.center,
            fill=fill,
        )


class RandomAffine(Transform):
655
    """[BETA] Random affine transformation the input keeping center invariant.
656

657
    .. v2betastatus:: RandomAffine transform
658

659
660
661
662
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

    Args:
        degrees (sequence or number): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or number, optional): Range of degrees to select from.
            If shear is a number, a shear parallel to the x-axis in the range (-shear, +shear)
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x-axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
            an x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default.
680
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
681
682
683
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
684
685
686
687
688
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
689
690
691
692
693
694
695
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """

696
697
698
699
700
701
702
703
704
    _v1_transform_cls = _transforms.RandomAffine

    def __init__(
        self,
        degrees: Union[numbers.Number, Sequence],
        translate: Optional[Sequence[float]] = None,
        scale: Optional[Sequence[float]] = None,
        shear: Optional[Union[int, float, Sequence[float]]] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.NEAREST,
Philip Meier's avatar
Philip Meier committed
705
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        center: Optional[List[float]] = None,
    ) -> None:
        super().__init__()
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
        if translate is not None:
            _check_sequence_input(translate, "translate", req_sizes=(2,))
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate
        if scale is not None:
            _check_sequence_input(scale, "scale", req_sizes=(2,))
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
        else:
            self.shear = shear

        self.interpolation = _check_interpolation(interpolation)
729
730
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)

        angle = torch.empty(1).uniform_(self.degrees[0], self.degrees[1]).item()
        if self.translate is not None:
            max_dx = float(self.translate[0] * width)
            max_dy = float(self.translate[1] * height)
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translate = (tx, ty)
        else:
            translate = (0, 0)

        if self.scale is not None:
            scale = torch.empty(1).uniform_(self.scale[0], self.scale[1]).item()
        else:
            scale = 1.0

        shear_x = shear_y = 0.0
        if self.shear is not None:
            shear_x = torch.empty(1).uniform_(self.shear[0], self.shear[1]).item()
            if len(self.shear) == 4:
                shear_y = torch.empty(1).uniform_(self.shear[2], self.shear[3]).item()

        shear = (shear_x, shear_y)
        return dict(angle=angle, translate=translate, scale=scale, shear=shear)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
765
        fill = self._fill[type(inpt)]
766
767
768
769
770
771
772
773
774
775
        return F.affine(
            inpt,
            **params,
            interpolation=self.interpolation,
            fill=fill,
            center=self.center,
        )


class RandomCrop(Transform):
776
    """[BETA] Crop the input at a random location.
777

778
    .. v2betastatus:: RandomCrop transform
779

780
781
782
783
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
784
785
786
787
788
789
790
791
792
793
794
795
796
797

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
798
        pad_if_needed (boolean, optional): It will pad the image if smaller than the
799
800
            desired size to avoid raising an exception. Since cropping is done
            after padding, the padding seems to be done at a random offset.
801
802
803
804
805
806
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
        padding_mode (str, optional): Type of padding. Should be: constant, edge, reflect or symmetric.
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image.

            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
    """

822
823
824
825
826
827
    _v1_transform_cls = _transforms.RandomCrop

    def _extract_params_for_v1_transform(self) -> Dict[str, Any]:
        params = super()._extract_params_for_v1_transform()

        if not (params["fill"] is None or isinstance(params["fill"], (int, float))):
828
            raise ValueError(f"{type(self).__name__}() can only be scripted for a scalar `fill`, but got {self.fill}.")
829
830
831
832
833
834
835
836
837
838
839
840
841
842

        padding = self.padding
        if padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = padding
            padding = [pad_left, pad_top, pad_right, pad_bottom]
        params["padding"] = padding

        return params

    def __init__(
        self,
        size: Union[int, Sequence[int]],
        padding: Optional[Union[int, Sequence[int]]] = None,
        pad_if_needed: bool = False,
Philip Meier's avatar
Philip Meier committed
843
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
844
845
846
847
848
849
850
851
852
853
854
855
856
        padding_mode: Literal["constant", "edge", "reflect", "symmetric"] = "constant",
    ) -> None:
        super().__init__()

        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")

        if pad_if_needed or padding is not None:
            if padding is not None:
                _check_padding_arg(padding)
            _check_padding_mode_arg(padding_mode)

        self.padding = F._geometry._parse_pad_padding(padding) if padding else None  # type: ignore[arg-type]
        self.pad_if_needed = pad_if_needed
857
858
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
        self.padding_mode = padding_mode

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        padded_height, padded_width = query_spatial_size(flat_inputs)

        if self.padding is not None:
            pad_left, pad_right, pad_top, pad_bottom = self.padding
            padded_height += pad_top + pad_bottom
            padded_width += pad_left + pad_right
        else:
            pad_left = pad_right = pad_top = pad_bottom = 0

        cropped_height, cropped_width = self.size

        if self.pad_if_needed:
            if padded_height < cropped_height:
                diff = cropped_height - padded_height

                pad_top += diff
                pad_bottom += diff
                padded_height += 2 * diff

            if padded_width < cropped_width:
                diff = cropped_width - padded_width

                pad_left += diff
                pad_right += diff
                padded_width += 2 * diff

        if padded_height < cropped_height or padded_width < cropped_width:
            raise ValueError(
                f"Required crop size {(cropped_height, cropped_width)} is larger than "
                f"{'padded ' if self.padding is not None else ''}input image size {(padded_height, padded_width)}."
            )

        # We need a different order here than we have in self.padding since this padding will be parsed again in `F.pad`
        padding = [pad_left, pad_top, pad_right, pad_bottom]
        needs_pad = any(padding)

        needs_vert_crop, top = (
            (True, int(torch.randint(0, padded_height - cropped_height + 1, size=())))
            if padded_height > cropped_height
            else (False, 0)
        )
        needs_horz_crop, left = (
            (True, int(torch.randint(0, padded_width - cropped_width + 1, size=())))
            if padded_width > cropped_width
            else (False, 0)
        )

        return dict(
            needs_crop=needs_vert_crop or needs_horz_crop,
            top=top,
            left=left,
            height=cropped_height,
            width=cropped_width,
            needs_pad=needs_pad,
            padding=padding,
        )

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        if params["needs_pad"]:
921
            fill = self._fill[type(inpt)]
922
923
924
925
926
927
928
929
930
            inpt = F.pad(inpt, padding=params["padding"], fill=fill, padding_mode=self.padding_mode)

        if params["needs_crop"]:
            inpt = F.crop(inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"])

        return inpt


class RandomPerspective(_RandomApplyTransform):
931
    """[BETA] Perform a random perspective transformation of the input with a given probability.
932

933
    .. v2betastatus:: RandomPerspective transform
934

935
936
937
938
    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.
939
940

    Args:
941
        distortion_scale (float, optional): argument to control the degree of distortion and ranges from 0 to 1.
942
            Default is 0.5.
943
944
        p (float, optional): probability of the input being transformed. Default is 0.5.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
945
946
947
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
948
949
950
951
952
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
953
954
    """

955
956
957
958
959
960
    _v1_transform_cls = _transforms.RandomPerspective

    def __init__(
        self,
        distortion_scale: float = 0.5,
        p: float = 0.5,
961
962
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
963
964
965
966
967
968
969
970
    ) -> None:
        super().__init__(p=p)

        if not (0 <= distortion_scale <= 1):
            raise ValueError("Argument distortion_scale value should be between 0 and 1")

        self.distortion_scale = distortion_scale
        self.interpolation = _check_interpolation(interpolation)
971
972
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        height, width = query_spatial_size(flat_inputs)

        distortion_scale = self.distortion_scale

        half_height = height // 2
        half_width = width // 2
        bound_height = int(distortion_scale * half_height) + 1
        bound_width = int(distortion_scale * half_width) + 1
        topleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        topright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(0, bound_height, size=(1,))),
        ]
        botright = [
            int(torch.randint(width - bound_width, width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        botleft = [
            int(torch.randint(0, bound_width, size=(1,))),
            int(torch.randint(height - bound_height, height, size=(1,))),
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
        endpoints = [topleft, topright, botright, botleft]
        perspective_coeffs = _get_perspective_coeffs(startpoints, endpoints)
        return dict(coefficients=perspective_coeffs)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1005
        fill = self._fill[type(inpt)]
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
        return F.perspective(
            inpt,
            None,
            None,
            fill=fill,
            interpolation=self.interpolation,
            **params,
        )


class ElasticTransform(Transform):
1017
1018
    """[BETA] Transform the input with elastic transformations.

1019
    .. v2betastatus:: RandomPerspective transform
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Given alpha and sigma, it will generate displacement
    vectors for all pixels based on random offsets. Alpha controls the strength
    and sigma controls the smoothness of the displacements.
    The displacements are added to an identity grid and the resulting grid is
    used to transform the input.

    .. note::
        Implementation to transform bounding boxes is approximative (not exact).
        We construct an approximation of the inverse grid as ``inverse_grid = idenity - displacement``.
        This is not an exact inverse of the grid used to transform images, i.e. ``grid = identity + displacement``.
        Our assumption is that ``displacement * displacement`` is small and can be ignored.
        Large displacements would lead to large errors in the approximation.

    Applications:
        Randomly transforms the morphology of objects in images and produces a
        see-through-water-like effect.

    Args:
        alpha (float or sequence of floats, optional): Magnitude of displacements. Default is 50.0.
        sigma (float or sequence of floats, optional): Smoothness of displacements. Default is 5.0.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        fill (number or tuple or dict, optional): Pixel fill value used when the  ``padding_mode`` is constant.
            Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively.
            Fill value can be also a dictionary mapping data type to the fill value, e.g.
            ``fill={datapoints.Image: 127, datapoints.Mask: 0}`` where ``Image`` will be filled with 127 and
            ``Mask`` will be filled with 0.
    """

1057
1058
1059
1060
1061
1062
1063
    _v1_transform_cls = _transforms.ElasticTransform

    def __init__(
        self,
        alpha: Union[float, Sequence[float]] = 50.0,
        sigma: Union[float, Sequence[float]] = 5.0,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
1064
        fill: Union[datapoints._FillType, Dict[Type, datapoints._FillType]] = 0,
1065
1066
1067
1068
1069
1070
    ) -> None:
        super().__init__()
        self.alpha = _setup_float_or_seq(alpha, "alpha", 2)
        self.sigma = _setup_float_or_seq(sigma, "sigma", 2)

        self.interpolation = _check_interpolation(interpolation)
1071
1072
        self.fill = fill
        self._fill = _setup_fill_arg(fill)
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        size = list(query_spatial_size(flat_inputs))

        dx = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[0] > 0.0:
            kx = int(8 * self.sigma[0] + 1)
            # if kernel size is even we have to make it odd
            if kx % 2 == 0:
                kx += 1
            dx = F.gaussian_blur(dx, [kx, kx], list(self.sigma))
        dx = dx * self.alpha[0] / size[0]

        dy = torch.rand([1, 1] + size) * 2 - 1
        if self.sigma[1] > 0.0:
            ky = int(8 * self.sigma[1] + 1)
            # if kernel size is even we have to make it odd
            if ky % 2 == 0:
                ky += 1
            dy = F.gaussian_blur(dy, [ky, ky], list(self.sigma))
        dy = dy * self.alpha[1] / size[1]
        displacement = torch.concat([dx, dy], 1).permute([0, 2, 3, 1])  # 1 x H x W x 2
        return dict(displacement=displacement)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
1098
        fill = self._fill[type(inpt)]
1099
1100
1101
1102
1103
1104
1105
1106
1107
        return F.elastic(
            inpt,
            **params,
            fill=fill,
            interpolation=self.interpolation,
        )


class RandomIoUCrop(Transform):
1108
1109
1110
    """[BETA] Random IoU crop transformation from
    `"SSD: Single Shot MultiBox Detector" <https://arxiv.org/abs/1512.02325>`_.

1111
    .. v2betastatus:: RandomIoUCrop transform
1112
1113
1114
1115
1116

    This transformation requires an image or video data and ``datapoints.BoundingBox`` in the input.

    .. warning::
        In order to properly remove the bounding boxes below the IoU threshold, `RandomIoUCrop`
1117
        must be followed by :class:`~torchvision.transforms.v2.SanitizeBoundingBox`, either immediately
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
        after or later in the transforms pipeline.

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_scale (float, optional): Minimum factors to scale the input size.
        max_scale (float, optional): Maximum factors to scale the input size.
        min_aspect_ratio (float, optional): Minimum aspect ratio for the cropped image or video.
        max_aspect_ratio (float, optional): Maximum aspect ratio for the cropped image or video.
        sampler_options (list of float, optional): List of minimal IoU (Jaccard) overlap between all the boxes and
            a cropped image or video. Default, ``None`` which corresponds to ``[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]``
        trials (int, optional): Number of trials to find a crop for a given value of minimal IoU (Jaccard) overlap.
            Default, 40.
    """

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    def __init__(
        self,
        min_scale: float = 0.3,
        max_scale: float = 1.0,
        min_aspect_ratio: float = 0.5,
        max_aspect_ratio: float = 2.0,
        sampler_options: Optional[List[float]] = None,
        trials: int = 40,
    ):
        super().__init__()
        # Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        if sampler_options is None:
            sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0]
        self.options = sampler_options
        self.trials = trials

    def _check_inputs(self, flat_inputs: List[Any]) -> None:
        if not (
            has_all(flat_inputs, datapoints.BoundingBox)
            and has_any(flat_inputs, PIL.Image.Image, datapoints.Image, is_simple_tensor)
        ):
            raise TypeError(
                f"{type(self).__name__}() requires input sample to contain tensor or PIL images "
                "and bounding boxes. Sample can also contain masks."
            )

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_h, orig_w = query_spatial_size(flat_inputs)
        bboxes = query_bounding_box(flat_inputs)

        while True:
            # sample an option
            idx = int(torch.randint(low=0, high=len(self.options), size=(1,)))
            min_jaccard_overlap = self.options[idx]
            if min_jaccard_overlap >= 1.0:  # a value larger than 1 encodes the leave as-is option
                return dict()

            for _ in range(self.trials):
                # check the aspect ratio limitations
                r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2)
                new_w = int(orig_w * r[0])
                new_h = int(orig_h * r[1])
                aspect_ratio = new_w / new_h
                if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio):
                    continue

                # check for 0 area crops
                r = torch.rand(2)
                left = int((orig_w - new_w) * r[0])
                top = int((orig_h - new_h) * r[1])
                right = left + new_w
                bottom = top + new_h
                if left == right or top == bottom:
                    continue

                # check for any valid boxes with centers within the crop area
                xyxy_bboxes = F.convert_format_bounding_box(
                    bboxes.as_subclass(torch.Tensor), bboxes.format, datapoints.BoundingBoxFormat.XYXY
                )
                cx = 0.5 * (xyxy_bboxes[..., 0] + xyxy_bboxes[..., 2])
                cy = 0.5 * (xyxy_bboxes[..., 1] + xyxy_bboxes[..., 3])
                is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom)
                if not is_within_crop_area.any():
                    continue

                # check at least 1 box with jaccard limitations
                xyxy_bboxes = xyxy_bboxes[is_within_crop_area]
                ious = box_iou(
                    xyxy_bboxes,
                    torch.tensor([[left, top, right, bottom]], dtype=xyxy_bboxes.dtype, device=xyxy_bboxes.device),
                )
                if ious.max() < min_jaccard_overlap:
                    continue

                return dict(top=top, left=left, height=new_h, width=new_w, is_within_crop_area=is_within_crop_area)

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:

        if len(params) < 1:
            return inpt

        output = F.crop(inpt, top=params["top"], left=params["left"], height=params["height"], width=params["width"])

        if isinstance(output, datapoints.BoundingBox):
1224
            # We "mark" the invalid boxes as degenreate, and they can be
1225
            # removed by a later call to SanitizeBoundingBox()
1226
            output[~params["is_within_crop_area"]] = 0
1227
1228
1229
1230
1231

        return output


class ScaleJitter(Transform):
1232
1233
1234
    """[BETA] Perform Large Scale Jitter on the input according to
    `"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_.

1235
    .. v2betastatus:: ScaleJitter transform
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        target_size (tuple of int): Target size. This parameter defines base scale for jittering,
            e.g. ``min(target_size[0] / width, target_size[1] / height)``.
        scale_range (tuple of float, optional): Minimum and maximum of the scale range. Default, ``(0.1, 2.0)``.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
    def __init__(
        self,
        target_size: Tuple[int, int],
        scale_range: Tuple[float, float] = (0.1, 2.0),
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ):
        super().__init__()
        self.target_size = target_size
        self.scale_range = scale_range
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_height, orig_width = query_spatial_size(flat_inputs)

        scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0])
        r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale
        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias)


class RandomShortestSize(Transform):
1299
1300
    """[BETA] Randomly resize the input.

1301
    .. v2betastatus:: RandomShortestSize transform
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_size (int or sequence of int): Minimum spatial size. Single integer value or a sequence of integer values.
        max_size (int, optional): Maximum spatial size. Default, None.
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
    def __init__(
        self,
        min_size: Union[List[int], Tuple[int], int],
        max_size: Optional[int] = None,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ):
        super().__init__()
        self.min_size = [min_size] if isinstance(min_size, int) else list(min_size)
        self.max_size = max_size
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        orig_height, orig_width = query_spatial_size(flat_inputs)

        min_size = self.min_size[int(torch.randint(len(self.min_size), ()))]
        r = min_size / min(orig_height, orig_width)
        if self.max_size is not None:
            r = min(r, self.max_size / max(orig_height, orig_width))

        new_width = int(orig_width * r)
        new_height = int(orig_height * r)

        return dict(size=(new_height, new_width))

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, size=params["size"], interpolation=self.interpolation, antialias=self.antialias)


class RandomResize(Transform):
1367
1368
    """[BETA] Randomly resize the input.

1369
    .. v2betastatus:: RandomResize transform
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

    This transformation can be used together with ``RandomCrop`` as data augmentations to train
    models on image segmentation task.

    Output spatial size is randomly sampled from the interval ``[min_size, max_size]``:

    .. code-block:: python

        size = uniform_sample(min_size, max_size)
        output_width = size
        output_height = size

    If the input is a :class:`torch.Tensor` or a ``Datapoint`` (e.g. :class:`~torchvision.datapoints.Image`,
    :class:`~torchvision.datapoints.Video`, :class:`~torchvision.datapoints.BoundingBox` etc.)
    it can have arbitrary number of leading batch dimensions. For example,
    the image can have ``[..., C, H, W]`` shape. A bounding box can have ``[..., 4]`` shape.

    Args:
        min_size (int): Minimum output size for random sampling
        max_size (int): Maximum output size for random sampling
        interpolation (InterpolationMode, optional): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
            The corresponding Pillow integer constants, e.g. ``PIL.Image.BILINEAR`` are accepted as well.
        antialias (bool, optional): Whether to apply antialiasing.
            It only affects **tensors** with bilinear or bicubic modes and it is
            ignored otherwise: on PIL images, antialiasing is always applied on
            bilinear or bicubic modes; on other modes (for PIL images and
            tensors), antialiasing makes no sense and this parameter is ignored.
            Possible values are:

            - ``True``: will apply antialiasing for bilinear or bicubic modes.
              Other mode aren't affected. This is probably what you want to use.
            - ``False``: will not apply antialiasing for tensors on any mode. PIL
              images are still antialiased on bilinear or bicubic modes, because
              PIL doesn't support no antialias.
            - ``None``: equivalent to ``False`` for tensors and ``True`` for
              PIL images. This value exists for legacy reasons and you probably
              don't want to use it unless you really know what you are doing.

            The current default is ``None`` **but will change to** ``True`` **in
            v0.17** for the PIL and Tensor backends to be consistent.
    """

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
    def __init__(
        self,
        min_size: int,
        max_size: int,
        interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
        antialias: Optional[Union[str, bool]] = "warn",
    ) -> None:
        super().__init__()
        self.min_size = min_size
        self.max_size = max_size
        self.interpolation = _check_interpolation(interpolation)
        self.antialias = antialias

    def _get_params(self, flat_inputs: List[Any]) -> Dict[str, Any]:
        size = int(torch.randint(self.min_size, self.max_size, ()))
        return dict(size=[size])

    def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
        return F.resize(inpt, params["size"], interpolation=self.interpolation, antialias=self.antialias)