test_transforms_v2_consistency.py 45.7 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import PIL.Image
10
import pytest
11
12

import torch
13
import torchvision.transforms.v2 as v2_transforms
14
from common_utils import assert_close, assert_equal, set_rng_seed
15
from torch import nn
16
from torchvision import transforms as legacy_transforms, tv_tensors
17
from torchvision._utils import sequence_to_str
18

19
from torchvision.transforms import functional as legacy_F
20
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
21
from torchvision.transforms.v2._utils import _get_fill, query_size
22
from torchvision.transforms.v2.functional import to_pil_image
23
24
25
26
27
28
29
30
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
31

32
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
33
34


Nicolas Hug's avatar
Nicolas Hug committed
35
36
37
38
39
40
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


41
42
43
44
45
46
47
48
49
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


50
51
class ConsistencyConfig:
    def __init__(
52
53
54
        self,
        prototype_cls,
        legacy_cls,
55
56
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
57
58
59
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
60
        closeness_kwargs=None,
61
62
63
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
64
        self.args_kwargs = args_kwargs
65
66
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
67
        self.removed_params = removed_params
68
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
69
70


71
72
73
74
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

75
76
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
77
        v2_transforms.Normalize,
78
79
80
81
82
83
84
85
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
86
        v2_transforms.CenterCrop,
87
88
89
90
91
92
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
93
    ConsistencyConfig(
94
        v2_transforms.FiveCrop,
95
96
97
98
99
100
101
102
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
103
        v2_transforms.TenCrop,
104
105
106
107
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
108
            ArgsKwargs(18, vertical_flip=True),
109
110
111
112
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
113
        v2_transforms.Pad,
114
115
        legacy_transforms.Pad,
        [
116
            NotScriptableArgsKwargs(3),
117
118
119
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
120
121
122
123
124
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
125
126
        ],
    ),
127
128
    *[
        ConsistencyConfig(
129
            v2_transforms.LinearTransformation,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
149
    ConsistencyConfig(
150
        v2_transforms.Grayscale,
151
152
153
154
155
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
156
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
157
158
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
159
    ),
160
    ConsistencyConfig(
161
        v2_transforms.ToPILImage,
162
        legacy_transforms.ToPILImage,
163
        [NotScriptableArgsKwargs()],
164
165
        make_images_kwargs=dict(
            color_spaces=[
166
167
168
169
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
170
171
172
173
174
175
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
176
        v2_transforms.Lambda,
177
178
        legacy_transforms.Lambda,
        [
179
            NotScriptableArgsKwargs(lambda image: image / 2),
180
181
182
183
184
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
185
    ConsistencyConfig(
186
        v2_transforms.RandomEqualize,
187
188
189
190
191
192
193
194
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
195
        v2_transforms.RandomInvert,
196
197
198
199
200
201
202
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
203
        v2_transforms.RandomPosterize,
204
205
206
207
208
209
210
211
212
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
213
        v2_transforms.RandomSolarize,
214
215
216
217
218
219
220
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
221
222
    *[
        ConsistencyConfig(
223
            v2_transforms.RandomAutocontrast,
224
225
226
227
228
229
230
231
232
233
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
234
    ConsistencyConfig(
235
        v2_transforms.RandomAdjustSharpness,
236
237
238
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
239
            ArgsKwargs(p=1, sharpness_factor=0.2),
240
241
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
242
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
243
244
    ),
    ConsistencyConfig(
245
        v2_transforms.RandomGrayscale,
246
247
248
249
250
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
251
252
253
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
254
255
    ),
    ConsistencyConfig(
256
        v2_transforms.RandomResizedCrop,
257
258
259
260
261
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs(16),
            ArgsKwargs(17, scale=(0.3, 0.7)),
            ArgsKwargs(25, ratio=(0.5, 1.5)),
262
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
263
            ArgsKwargs((31, 28), interpolation=PIL.Image.NEAREST),
264
265
266
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
        ],
267
268
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        closeness_kwargs=dict(rtol=0, atol=1),
269
    ),
270
271
272
273
274
275
276
277
278
    ConsistencyConfig(
        v2_transforms.RandomResizedCrop,
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC, antialias=True),
            ArgsKwargs((33, 26), interpolation=PIL.Image.BICUBIC, antialias=True),
        ],
        closeness_kwargs=dict(rtol=0, atol=21),
    ),
279
    ConsistencyConfig(
280
        v2_transforms.RandomErasing,
281
282
283
284
285
286
287
288
289
290
291
292
293
        legacy_transforms.RandomErasing,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, scale=(0.3, 0.7)),
            ArgsKwargs(p=1, ratio=(0.5, 1.5)),
            ArgsKwargs(p=1, value=1),
            ArgsKwargs(p=1, value=(1, 2, 3)),
            ArgsKwargs(p=1, value="random"),
        ],
        supports_pil=False,
    ),
    ConsistencyConfig(
294
        v2_transforms.ColorJitter,
295
296
297
298
299
300
301
302
303
304
305
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
306
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
307
        ],
308
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
309
310
    ),
    ConsistencyConfig(
311
        v2_transforms.GaussianBlur,
312
313
314
315
316
317
318
        legacy_transforms.GaussianBlur,
        [
            ArgsKwargs(kernel_size=3),
            ArgsKwargs(kernel_size=(1, 5)),
            ArgsKwargs(kernel_size=3, sigma=0.7),
            ArgsKwargs(kernel_size=5, sigma=(0.3, 1.4)),
        ],
319
        closeness_kwargs={"rtol": 1e-5, "atol": 1e-5},
320
321
    ),
    ConsistencyConfig(
322
        v2_transforms.RandomPerspective,
323
324
325
326
327
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
328
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
329
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
330
331
332
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
333
        closeness_kwargs={"atol": None, "rtol": None},
334
    ),
335
    ConsistencyConfig(
336
        v2_transforms.PILToTensor,
337
338
339
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
340
        v2_transforms.ToTensor,
341
342
343
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
344
        v2_transforms.Compose,
345
346
347
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
348
        v2_transforms.RandomApply,
349
350
351
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
352
        v2_transforms.RandomChoice,
353
354
355
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
356
        v2_transforms.RandomOrder,
357
358
359
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
360
        v2_transforms.AugMix,
361
362
363
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
364
        v2_transforms.AutoAugment,
365
366
367
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
368
        v2_transforms.RandAugment,
369
370
371
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
372
        v2_transforms.TrivialAugmentWide,
373
374
        legacy_transforms.TrivialAugmentWide,
    ),
375
376
377
]


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
396
397
398
399
400
401
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
402
403
    if extra_without_default:
        raise AssertionError(
404
405
406
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
407
408
        )

409
410
411
412
413
414
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
415
416


417
418
419
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
420
421
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
422

423
424
    closeness_kwargs = closeness_kwargs or dict()

425
426
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
427
428
429

        image_tensor = torch.Tensor(image)
        try:
430
            torch.manual_seed(0)
431
            output_legacy_tensor = legacy_transform(image_tensor)
432
433
        except Exception as exc:
            raise pytest.UsageError(
434
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
435
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
436
437
438
439
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
440
            torch.manual_seed(0)
441
            output_prototype_tensor = prototype_transform(image_tensor)
442
443
        except Exception as exc:
            raise AssertionError(
444
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
445
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
446
                f"`is_pure_tensor` path in `_transform`."
447
448
            ) from exc

449
        assert_close(
450
451
452
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
453
            **closeness_kwargs,
454
455
456
        )

        try:
457
            torch.manual_seed(0)
458
            output_prototype_image = prototype_transform(image)
459
460
        except Exception as exc:
            raise AssertionError(
461
                f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
462
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
463
                f"`tv_tensors.Image` path in `_transform`."
464
465
            ) from exc

466
        assert_close(
467
            output_prototype_image,
468
            output_prototype_tensor,
469
            msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
470
            **closeness_kwargs,
471
472
        )

473
        if image.ndim == 3 and supports_pil:
474
            image_pil = to_pil_image(image)
475

476
            try:
477
                torch.manual_seed(0)
478
                output_legacy_pil = legacy_transform(image_pil)
479
480
            except Exception as exc:
                raise pytest.UsageError(
481
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
482
483
484
485
486
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
487
                torch.manual_seed(0)
488
                output_prototype_pil = prototype_transform(image_pil)
489
490
            except Exception as exc:
                raise AssertionError(
491
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
492
493
494
495
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

496
            assert_close(
497
498
                output_prototype_pil,
                output_legacy_pil,
499
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
500
                **closeness_kwargs,
501
            )
502
503


504
@pytest.mark.parametrize(
505
506
    ("config", "args_kwargs"),
    [
507
508
509
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
510
        for config in CONSISTENCY_CONFIGS
511
        for idx, args_kwargs in enumerate(config.args_kwargs)
512
    ],
513
)
514
@pytest.mark.filterwarnings("ignore")
515
def test_call_consistency(config, args_kwargs):
516
517
518
    args, kwargs = args_kwargs

    try:
519
        legacy_transform = config.legacy_cls(*args, **kwargs)
520
521
522
523
524
525
526
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
527
        prototype_transform = config.prototype_cls(*args, **kwargs)
528
529
530
531
532
533
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

534
535
536
537
538
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
539
        closeness_kwargs=config.closeness_kwargs,
540
541
542
    )


543
544
545
546
547
548
549
550
551
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
552
553
554
555
556
557
            (v2_transforms.RandomResizedCrop, ArgsKwargs(make_image(), scale=[0.3, 0.7], ratio=[0.5, 1.5])),
            (v2_transforms.RandomErasing, ArgsKwargs(make_image(), scale=(0.3, 0.7), ratio=(0.5, 1.5))),
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.GaussianBlur, ArgsKwargs(0.3, 1.4)),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
558
559
        ]
    ],
560
)
561
562


563
@get_params_parametrization
564
def test_get_params_alias(config, get_params_args_kwargs):
565
566
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

567
568
569
570
571
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
572

573
574
575
    assert prototype_transform.get_params is legacy_transform.get_params


576
@get_params_parametrization
577
578
579
580
581
582
583
584
585
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
586

587
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
588
589


590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


622
623
624
625
626
627
628
629
630
631
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
632
        prototype_transform = v2_transforms.Compose(
633
            [
634
635
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
636
637
638
639
640
641
642
643
644
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

645
646
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
647
648

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
649
650
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
651
        prototype_transform = v2_transforms.RandomApply(
652
653
            sequence_type(
                [
654
655
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
656
657
                ]
            ),
658
659
660
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
661
662
663
664
665
666
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
667
668
669
            p=p,
        )

670
671
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
672

673
674
675
676
677
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

678
    # We can't test other values for `p` since the random parameter generation is different
679
680
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
681
        prototype_transform = v2_transforms.RandomChoice(
682
            [
683
                v2_transforms.Resize(256),
684
685
                legacy_transforms.CenterCrop(224),
            ],
686
            p=probabilities,
687
688
689
690
691
692
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
693
            p=probabilities,
694
695
        )

696
697
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
698
699


700
701
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
702
        prototype_transform = v2_transforms.PILToTensor()
703
704
        legacy_transform = legacy_transforms.PILToTensor()

705
        for image in make_images(extra_dims=[()]):
706
            image_pil = to_pil_image(image)
707
708
709
710

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
711
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
712
            prototype_transform = v2_transforms.ToTensor()
713
714
        legacy_transform = legacy_transforms.ToTensor()

715
        for image in make_images(extra_dims=[()]):
716
            image_pil = to_pil_image(image)
717
718
719
720
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
721
722
723
724
725
726
727
728


class TestAATransforms:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
729
            tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
730
731
732
733
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
734
        [
735
736
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
737
738
            PIL.Image.NEAREST,
        ],
739
740
741
    )
    def test_randaug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
742
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            # Stable API, if signed there is another random call
            if t._AUGMENTATION_SPACE[keys[i]][1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for i in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

764
            assert_close(expected_output, output, atol=1, rtol=0.1)
765

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_randaug_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

789
790
791
792
793
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
794
            tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
795
796
797
798
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
799
        [
800
801
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
802
803
            PIL.Image.NEAREST,
        ],
804
805
806
    )
    def test_trivial_aug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
807
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for _ in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

839
            assert_close(expected_output, output, atol=1, rtol=0.1)
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_trivial_aug_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

864
865
866
867
868
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
869
            tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
870
871
872
873
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
874
        [
875
876
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
877
878
            PIL.Image.NEAREST,
        ],
879
880
881
882
    )
    def test_augmix(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t_ref._sample_dirichlet = lambda t: t.softmax(dim=-1)
883
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
        t._sample_dirichlet = lambda t: t.softmax(dim=-1)

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        expected_output = t_ref(inpt)
        output = t(inpt)

        assert_equal(expected_output, output)

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_augmix_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)

        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

941
942
943
944
945
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
946
            tv_tensors.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
947
948
949
950
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
951
        [
952
953
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
954
955
            PIL.Image.NEAREST,
        ],
956
957
958
959
    )
    def test_aa(self, inpt, interpolation):
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
960
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)
961
962
963
964
965
966
967
968

        torch.manual_seed(12)
        expected_output = t_ref(inpt)

        torch.manual_seed(12)
        output = t(inpt)

        assert_equal(expected_output, output)
969

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_aa_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

994

995
def import_transforms_from_references(reference):
996
997
998
999
1000
1001
1002
1003
1004
1005
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
1006
1007
1008


det_transforms = import_transforms_from_references("detection")
1009
1010
1011


class TestRefDetTransforms:
1012
    def make_tv_tensors(self, with_mask=True):
1013
1014
1015
        size = (600, 800)
        num_objects = 22

1016
1017
1018
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

1019
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
1020
        target = {
1021
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1022
1023
1024
1025
1026
1027
1028
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

1029
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
1030
        target = {
1031
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1032
1033
1034
1035
1036
1037
1038
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

1039
        tv_tensor_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
1040
        target = {
1041
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1042
1043
1044
1045
1046
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

1047
        yield (tv_tensor_image, target)
1048
1049
1050
1051

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
1052
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
1053
1054
1055
1056
1057
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
1058
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
1059
1060
1061
1062
                    ]
                ),
                {"with_mask": False},
            ),
1063
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
1064
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
1065
1066
1067
1068
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
1069
                v2_transforms.RandomShortestSize(
1070
1071
1072
1073
1074
1075
1076
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
1077
        for dp in self.make_tv_tensors(**data_kwargs):
1078
1079
1080
1081
1082
1083
1084
1085
1086

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
1087
1088
1089
1090
1091
1092
1093
1094
1095


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
1096
class PadIfSmaller(v2_transforms.Transform):
1097
1098
1099
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
1100
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
1101
1102

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
1103
        height, width = query_size(sample)
1104
1105
1106
1107
1108
1109
1110
1111
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

1112
        fill = _get_fill(self.fill, type(inpt))
1113
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
1114
1115
1116


class TestRefSegTransforms:
1117
    def make_tv_tensors(self, supports_pil=True, image_dtype=torch.uint8):
1118
        size = (256, 460)
1119
1120
1121
1122
        num_categories = 21

        conv_fns = []
        if supports_pil:
1123
            conv_fns.append(to_pil_image)
1124
1125
1126
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
1127
1128
            tv_tensor_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
            tv_tensor_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
1129

1130
            dp = (conv_fn(tv_tensor_image), tv_tensor_mask)
1131
            dp_ref = (
1132
1133
                to_pil_image(tv_tensor_image) if supports_pil else tv_tensor_image.as_subclass(torch.Tensor),
                to_pil_image(tv_tensor_mask),
1134
1135
1136
1137
1138
1139
1140
1141
1142
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
1143
        for dp, dp_ref in self.make_tv_tensors(**data_kwargs or dict()):
1144
1145

            self.set_seed()
1146
            actual = actual_image, actual_mask = t(dp)
1147
1148

            self.set_seed()
1149
1150
1151
1152
1153
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
1154

1155
            assert_equal(actual, expected)
1156
1157
1158
1159
1160
1161

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
1162
                v2_transforms.RandomHorizontalFlip(p=1.0),
1163
1164
1165
1166
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
1167
                v2_transforms.RandomHorizontalFlip(p=0.0),
1168
1169
1170
1171
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
1172
                v2_transforms.Compose(
1173
                    [
1174
                        PadIfSmaller(size=480, fill={tv_tensors.Mask: 255, "others": 0}),
1175
                        v2_transforms.RandomCrop(size=480),
1176
1177
1178
1179
1180
1181
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1182
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1183
1184
1185
1186
1187
1188
1189
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
1202
        (legacy_F.resize, {"interpolation"}),
1203
1204
1205
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
1206
        (legacy_F.resized_crop, {"interpolation"}),
1207
        (legacy_F.hflip, {}),
1208
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
1209
1210
1211
1212
1213
1214
1215
1216
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
1217
1218
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
1230
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params