"pytorch/vscode:/vscode.git/clone" did not exist on "eb1525ec06813a673d83c55c7ad5c55065e4aed2"
test_transforms_v2_consistency.py 51.5 KB
Newer Older
1
import enum
2
3
import importlib.machinery
import importlib.util
4
import inspect
5
import random
6
import re
7
from collections import defaultdict
8
from pathlib import Path
9

10
import numpy as np
11
import PIL.Image
12
import pytest
13
14

import torch
15
import torchvision.transforms.v2 as v2_transforms
16
from common_utils import (
17
    ArgsKwargs,
18
    assert_close,
19
20
21
22
23
    assert_equal,
    make_bounding_box,
    make_detection_mask,
    make_image,
    make_images,
24
    make_segmentation_mask,
25
)
26
from torch import nn
27
from torchvision import datapoints, transforms as legacy_transforms
28
from torchvision._utils import sequence_to_str
29

30
from torchvision.transforms import functional as legacy_F
31
32
33
from torchvision.transforms.v2 import functional as prototype_F
from torchvision.transforms.v2.functional import to_image_pil
from torchvision.transforms.v2.utils import query_spatial_size
34

35
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
36
37


38
39
40
41
42
43
44
45
46
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


47
48
class ConsistencyConfig:
    def __init__(
49
50
51
        self,
        prototype_cls,
        legacy_cls,
52
53
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
54
55
56
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
57
        closeness_kwargs=None,
58
59
60
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
61
        self.args_kwargs = args_kwargs
62
63
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
64
        self.removed_params = removed_params
65
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
66
67


68
69
70
71
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

72
73
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
74
        v2_transforms.Normalize,
75
76
77
78
79
80
81
82
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
83
        v2_transforms.Resize,
84
85
        legacy_transforms.Resize,
        [
86
            NotScriptableArgsKwargs(32),
87
            ArgsKwargs([32]),
88
            ArgsKwargs((32, 29)),
89
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
90
91
            ArgsKwargs((30, 27), interpolation=PIL.Image.NEAREST),
            ArgsKwargs((35, 29), interpolation=PIL.Image.BILINEAR),
92
93
94
95
            NotScriptableArgsKwargs(31, max_size=32),
            ArgsKwargs([31], max_size=32),
            NotScriptableArgsKwargs(30, max_size=100),
            ArgsKwargs([31], max_size=32),
96
97
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
98
        ],
99
100
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        closeness_kwargs=dict(rtol=0, atol=1),
101
    ),
102
103
104
105
106
107
108
109
110
    ConsistencyConfig(
        v2_transforms.Resize,
        legacy_transforms.Resize,
        [
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC, antialias=True),
            ArgsKwargs((34, 25), interpolation=PIL.Image.BICUBIC, antialias=True),
        ],
        closeness_kwargs=dict(rtol=0, atol=21),
    ),
111
    ConsistencyConfig(
112
        v2_transforms.CenterCrop,
113
114
115
116
117
118
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
119
    ConsistencyConfig(
120
        v2_transforms.FiveCrop,
121
122
123
124
125
126
127
128
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
129
        v2_transforms.TenCrop,
130
131
132
133
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
134
            ArgsKwargs(18, vertical_flip=True),
135
136
137
138
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
139
        v2_transforms.Pad,
140
141
        legacy_transforms.Pad,
        [
142
            NotScriptableArgsKwargs(3),
143
144
145
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
146
147
148
149
150
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
151
152
        ],
    ),
153
154
    *[
        ConsistencyConfig(
155
            v2_transforms.LinearTransformation,
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
175
    ConsistencyConfig(
176
        v2_transforms.Grayscale,
177
178
179
180
181
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
182
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
183
184
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
185
    ),
186
    ConsistencyConfig(
187
        v2_transforms.ConvertDtype,
188
189
190
191
192
193
194
195
196
        legacy_transforms.ConvertImageDtype,
        [
            ArgsKwargs(torch.float16),
            ArgsKwargs(torch.bfloat16),
            ArgsKwargs(torch.float32),
            ArgsKwargs(torch.float64),
            ArgsKwargs(torch.uint8),
        ],
        supports_pil=False,
197
198
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
199
200
    ),
    ConsistencyConfig(
201
        v2_transforms.ToPILImage,
202
        legacy_transforms.ToPILImage,
203
        [NotScriptableArgsKwargs()],
204
205
        make_images_kwargs=dict(
            color_spaces=[
206
207
208
209
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
210
211
212
213
214
215
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
216
        v2_transforms.Lambda,
217
218
        legacy_transforms.Lambda,
        [
219
            NotScriptableArgsKwargs(lambda image: image / 2),
220
221
222
223
224
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
225
    ConsistencyConfig(
226
        v2_transforms.RandomHorizontalFlip,
227
228
229
230
231
232
233
        legacy_transforms.RandomHorizontalFlip,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
234
        v2_transforms.RandomVerticalFlip,
235
236
237
238
239
240
241
        legacy_transforms.RandomVerticalFlip,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
242
        v2_transforms.RandomEqualize,
243
244
245
246
247
248
249
250
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
251
        v2_transforms.RandomInvert,
252
253
254
255
256
257
258
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
259
        v2_transforms.RandomPosterize,
260
261
262
263
264
265
266
267
268
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
269
        v2_transforms.RandomSolarize,
270
271
272
273
274
275
276
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
277
278
    *[
        ConsistencyConfig(
279
            v2_transforms.RandomAutocontrast,
280
281
282
283
284
285
286
287
288
289
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
290
    ConsistencyConfig(
291
        v2_transforms.RandomAdjustSharpness,
292
293
294
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
295
            ArgsKwargs(p=1, sharpness_factor=0.2),
296
297
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
298
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
299
300
    ),
    ConsistencyConfig(
301
        v2_transforms.RandomGrayscale,
302
303
304
305
306
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
307
308
309
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
310
311
    ),
    ConsistencyConfig(
312
        v2_transforms.RandomResizedCrop,
313
314
315
316
317
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs(16),
            ArgsKwargs(17, scale=(0.3, 0.7)),
            ArgsKwargs(25, ratio=(0.5, 1.5)),
318
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
319
            ArgsKwargs((31, 28), interpolation=PIL.Image.NEAREST),
320
321
322
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
        ],
323
324
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        closeness_kwargs=dict(rtol=0, atol=1),
325
    ),
326
327
328
329
330
331
332
333
334
    ConsistencyConfig(
        v2_transforms.RandomResizedCrop,
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC, antialias=True),
            ArgsKwargs((33, 26), interpolation=PIL.Image.BICUBIC, antialias=True),
        ],
        closeness_kwargs=dict(rtol=0, atol=21),
    ),
335
    ConsistencyConfig(
336
        v2_transforms.RandomErasing,
337
338
339
340
341
342
343
344
345
346
347
348
349
        legacy_transforms.RandomErasing,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, scale=(0.3, 0.7)),
            ArgsKwargs(p=1, ratio=(0.5, 1.5)),
            ArgsKwargs(p=1, value=1),
            ArgsKwargs(p=1, value=(1, 2, 3)),
            ArgsKwargs(p=1, value="random"),
        ],
        supports_pil=False,
    ),
    ConsistencyConfig(
350
        v2_transforms.ColorJitter,
351
352
353
354
355
356
357
358
359
360
361
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
362
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
363
        ],
364
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
365
    ),
366
367
    *[
        ConsistencyConfig(
368
            v2_transforms.ElasticTransform,
369
370
371
372
373
374
375
            legacy_transforms.ElasticTransform,
            [
                ArgsKwargs(),
                ArgsKwargs(alpha=20.0),
                ArgsKwargs(alpha=(15.3, 27.2)),
                ArgsKwargs(sigma=3.0),
                ArgsKwargs(sigma=(2.5, 3.9)),
376
377
                ArgsKwargs(interpolation=v2_transforms.InterpolationMode.NEAREST),
                ArgsKwargs(interpolation=v2_transforms.InterpolationMode.BICUBIC),
378
379
                ArgsKwargs(interpolation=PIL.Image.NEAREST),
                ArgsKwargs(interpolation=PIL.Image.BICUBIC),
380
381
382
383
384
385
386
387
388
389
                ArgsKwargs(fill=1),
            ],
            # ElasticTransform needs larger images to avoid the needed internal padding being larger than the actual image
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(163, 163), (72, 333), (313, 95)], dtypes=[dt]),
            # We updated gaussian blur kernel generation with a faster and numerically more stable version
            # This brings float32 accumulation visible in elastic transform -> we need to relax consistency tolerance
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, {"rtol": 1e-1, "atol": 1}), (torch.float32, {"rtol": 1e-2, "atol": 1e-3})]
    ],
390
    ConsistencyConfig(
391
        v2_transforms.GaussianBlur,
392
393
394
395
396
397
398
        legacy_transforms.GaussianBlur,
        [
            ArgsKwargs(kernel_size=3),
            ArgsKwargs(kernel_size=(1, 5)),
            ArgsKwargs(kernel_size=3, sigma=0.7),
            ArgsKwargs(kernel_size=5, sigma=(0.3, 1.4)),
        ],
399
        closeness_kwargs={"rtol": 1e-5, "atol": 1e-5},
400
401
    ),
    ConsistencyConfig(
402
        v2_transforms.RandomAffine,
403
404
405
406
407
408
409
410
411
412
        legacy_transforms.RandomAffine,
        [
            ArgsKwargs(degrees=30.0),
            ArgsKwargs(degrees=(-20.0, 10.0)),
            ArgsKwargs(degrees=0.0, translate=(0.4, 0.6)),
            ArgsKwargs(degrees=0.0, scale=(0.3, 0.8)),
            ArgsKwargs(degrees=0.0, shear=13),
            ArgsKwargs(degrees=0.0, shear=(8, 17)),
            ArgsKwargs(degrees=0.0, shear=(4, 5, 4, 13)),
            ArgsKwargs(degrees=(-20.0, 10.0), translate=(0.4, 0.6), scale=(0.3, 0.8), shear=(4, 5, 4, 13)),
413
            ArgsKwargs(degrees=30.0, interpolation=v2_transforms.InterpolationMode.NEAREST),
414
            ArgsKwargs(degrees=30.0, interpolation=PIL.Image.NEAREST),
415
416
417
418
            ArgsKwargs(degrees=30.0, fill=1),
            ArgsKwargs(degrees=30.0, fill=(2, 3, 4)),
            ArgsKwargs(degrees=30.0, center=(0, 0)),
        ],
419
        removed_params=["fillcolor", "resample"],
420
421
    ),
    ConsistencyConfig(
422
        v2_transforms.RandomCrop,
423
424
425
426
        legacy_transforms.RandomCrop,
        [
            ArgsKwargs(12),
            ArgsKwargs((15, 17)),
427
428
            NotScriptableArgsKwargs(11, padding=1),
            ArgsKwargs(11, padding=[1]),
429
430
431
432
            ArgsKwargs((8, 13), padding=(2, 3)),
            ArgsKwargs((14, 9), padding=(0, 2, 1, 0)),
            ArgsKwargs(36, pad_if_needed=True),
            ArgsKwargs((7, 8), fill=1),
433
            NotScriptableArgsKwargs(5, fill=(1, 2, 3)),
434
            ArgsKwargs(12),
435
            NotScriptableArgsKwargs(15, padding=2, padding_mode="edge"),
436
437
438
439
440
441
            ArgsKwargs(17, padding=(1, 0), padding_mode="reflect"),
            ArgsKwargs(8, padding=(3, 0, 0, 1), padding_mode="symmetric"),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(26, 26), (18, 33), (29, 22)]),
    ),
    ConsistencyConfig(
442
        v2_transforms.RandomPerspective,
443
444
445
446
447
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
448
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
449
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
450
451
452
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
453
        closeness_kwargs={"atol": None, "rtol": None},
454
455
    ),
    ConsistencyConfig(
456
        v2_transforms.RandomRotation,
457
458
459
460
        legacy_transforms.RandomRotation,
        [
            ArgsKwargs(degrees=30.0),
            ArgsKwargs(degrees=(-20.0, 10.0)),
461
            ArgsKwargs(degrees=30.0, interpolation=v2_transforms.InterpolationMode.BILINEAR),
462
            ArgsKwargs(degrees=30.0, interpolation=PIL.Image.BILINEAR),
463
464
465
466
467
            ArgsKwargs(degrees=30.0, expand=True),
            ArgsKwargs(degrees=30.0, center=(0, 0)),
            ArgsKwargs(degrees=30.0, fill=1),
            ArgsKwargs(degrees=30.0, fill=(1, 2, 3)),
        ],
468
        removed_params=["resample"],
469
    ),
470
    ConsistencyConfig(
471
        v2_transforms.PILToTensor,
472
473
474
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
475
        v2_transforms.ToTensor,
476
477
478
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
479
        v2_transforms.Compose,
480
481
482
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
483
        v2_transforms.RandomApply,
484
485
486
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
487
        v2_transforms.RandomChoice,
488
489
490
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
491
        v2_transforms.RandomOrder,
492
493
494
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
495
        v2_transforms.AugMix,
496
497
498
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
499
        v2_transforms.AutoAugment,
500
501
502
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
503
        v2_transforms.RandAugment,
504
505
506
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
507
        v2_transforms.TrivialAugmentWide,
508
509
        legacy_transforms.TrivialAugmentWide,
    ),
510
511
512
]


513
514
def test_automatic_coverage():
    available = {
515
516
        name
        for name, obj in legacy_transforms.__dict__.items()
517
        if not name.startswith("_") and isinstance(obj, type) and not issubclass(obj, enum.Enum)
518
519
    }

520
    checked = {config.legacy_cls.__name__ for config in CONSISTENCY_CONFIGS}
521

522
    missing = available - checked
523
524
525
526
527
528
529
    if missing:
        raise AssertionError(
            f"The prototype transformations {sequence_to_str(sorted(missing), separate_last='and ')} "
            f"are not checked for consistency although a legacy counterpart exists."
        )


530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
548
549
550
551
552
553
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
554
555
    if extra_without_default:
        raise AssertionError(
556
557
558
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
559
560
        )

561
562
563
564
565
566
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
567
568


569
570
571
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
572
573
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
574

575
576
    closeness_kwargs = closeness_kwargs or dict()

577
578
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
579
580
581

        image_tensor = torch.Tensor(image)
        try:
582
            torch.manual_seed(0)
583
            output_legacy_tensor = legacy_transform(image_tensor)
584
585
        except Exception as exc:
            raise pytest.UsageError(
586
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
587
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
588
589
590
591
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
592
            torch.manual_seed(0)
593
            output_prototype_tensor = prototype_transform(image_tensor)
594
595
        except Exception as exc:
            raise AssertionError(
596
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
597
598
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                f"`is_simple_tensor` path in `_transform`."
599
600
            ) from exc

601
        assert_close(
602
603
604
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
605
            **closeness_kwargs,
606
607
608
        )

        try:
609
            torch.manual_seed(0)
610
            output_prototype_image = prototype_transform(image)
611
612
        except Exception as exc:
            raise AssertionError(
613
                f"Transforming a image datapoint with shape {image_repr} failed in the prototype transform with "
614
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
615
                f"`datapoints.Image` path in `_transform`."
616
617
            ) from exc

618
        assert_close(
619
            output_prototype_image,
620
            output_prototype_tensor,
621
            msg=lambda msg: f"Output for datapoint and tensor images is not equal: \n\n{msg}",
622
            **closeness_kwargs,
623
624
        )

625
626
627
        if image.ndim == 3 and supports_pil:
            image_pil = to_image_pil(image)

628
            try:
629
                torch.manual_seed(0)
630
                output_legacy_pil = legacy_transform(image_pil)
631
632
            except Exception as exc:
                raise pytest.UsageError(
633
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
634
635
636
637
638
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
639
                torch.manual_seed(0)
640
                output_prototype_pil = prototype_transform(image_pil)
641
642
            except Exception as exc:
                raise AssertionError(
643
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
644
645
646
647
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

648
            assert_close(
649
650
                output_prototype_pil,
                output_legacy_pil,
651
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
652
                **closeness_kwargs,
653
            )
654
655


656
@pytest.mark.parametrize(
657
658
    ("config", "args_kwargs"),
    [
659
660
661
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
662
        for config in CONSISTENCY_CONFIGS
663
        for idx, args_kwargs in enumerate(config.args_kwargs)
664
    ],
665
)
666
@pytest.mark.filterwarnings("ignore")
667
def test_call_consistency(config, args_kwargs):
668
669
670
    args, kwargs = args_kwargs

    try:
671
        legacy_transform = config.legacy_cls(*args, **kwargs)
672
673
674
675
676
677
678
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
679
        prototype_transform = config.prototype_cls(*args, **kwargs)
680
681
682
683
684
685
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

686
687
688
689
690
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
691
        closeness_kwargs=config.closeness_kwargs,
692
693
694
    )


695
696
697
698
699
700
701
702
703
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
704
705
706
707
708
            (v2_transforms.RandomResizedCrop, ArgsKwargs(make_image(), scale=[0.3, 0.7], ratio=[0.5, 1.5])),
            (v2_transforms.RandomErasing, ArgsKwargs(make_image(), scale=(0.3, 0.7), ratio=(0.5, 1.5))),
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.ElasticTransform, ArgsKwargs(alpha=[15.3, 27.2], sigma=[2.5, 3.9], size=[17, 31])),
            (v2_transforms.GaussianBlur, ArgsKwargs(0.3, 1.4)),
709
            (
710
                v2_transforms.RandomAffine,
711
712
                ArgsKwargs(degrees=[-20.0, 10.0], translate=None, scale_ranges=None, shears=None, img_size=[15, 29]),
            ),
713
714
715
716
            (v2_transforms.RandomCrop, ArgsKwargs(make_image(size=(61, 47)), output_size=(19, 25))),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.RandomRotation, ArgsKwargs(degrees=[-20.0, 10.0])),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
717
718
        ]
    ],
719
)
720
721


722
@get_params_parametrization
723
def test_get_params_alias(config, get_params_args_kwargs):
724
725
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

726
727
728
729
730
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
731

732
733
734
    assert prototype_transform.get_params is legacy_transform.get_params


735
@get_params_parametrization
736
737
738
739
740
741
742
743
744
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
745

746
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
747
748


749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


781
782
783
784
785
786
787
788
789
790
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
791
        prototype_transform = v2_transforms.Compose(
792
            [
793
794
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
795
796
797
798
799
800
801
802
803
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

804
805
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
806
807

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
808
809
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
810
        prototype_transform = v2_transforms.RandomApply(
811
812
            sequence_type(
                [
813
814
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
815
816
                ]
            ),
817
818
819
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
820
821
822
823
824
825
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
826
827
828
            p=p,
        )

829
830
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
831

832
833
834
835
836
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

837
    # We can't test other values for `p` since the random parameter generation is different
838
839
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
840
        prototype_transform = v2_transforms.RandomChoice(
841
            [
842
                v2_transforms.Resize(256),
843
844
                legacy_transforms.CenterCrop(224),
            ],
845
            p=probabilities,
846
847
848
849
850
851
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
852
            p=probabilities,
853
854
        )

855
856
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
857
858


859
860
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
861
        prototype_transform = v2_transforms.PILToTensor()
862
863
        legacy_transform = legacy_transforms.PILToTensor()

864
865
866
867
868
869
        for image in make_images(extra_dims=[()]):
            image_pil = to_image_pil(image)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
870
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
871
            prototype_transform = v2_transforms.ToTensor()
872
873
        legacy_transform = legacy_transforms.ToTensor()

874
875
876
877
878
879
        for image in make_images(extra_dims=[()]):
            image_pil = to_image_pil(image)
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
880
881
882
883
884
885
886
887


class TestAATransforms:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
888
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
889
890
891
892
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
893
        [
894
895
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
896
897
            PIL.Image.NEAREST,
        ],
898
899
900
    )
    def test_randaug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
901
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            # Stable API, if signed there is another random call
            if t._AUGMENTATION_SPACE[keys[i]][1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for i in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

923
            assert_close(expected_output, output, atol=1, rtol=0.1)
924
925
926
927
928
929

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
930
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
931
932
933
934
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
935
        [
936
937
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
938
939
            PIL.Image.NEAREST,
        ],
940
941
942
    )
    def test_trivial_aug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
943
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for _ in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

975
            assert_close(expected_output, output, atol=1, rtol=0.1)
976
977
978
979
980
981

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
982
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
983
984
985
986
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
987
        [
988
989
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
990
991
            PIL.Image.NEAREST,
        ],
992
993
994
995
    )
    def test_augmix(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t_ref._sample_dirichlet = lambda t: t.softmax(dim=-1)
996
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        t._sample_dirichlet = lambda t: t.softmax(dim=-1)

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        expected_output = t_ref(inpt)
        output = t(inpt)

        assert_equal(expected_output, output)

    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
1035
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
1036
1037
1038
1039
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
1040
        [
1041
1042
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
1043
1044
            PIL.Image.NEAREST,
        ],
1045
1046
1047
1048
    )
    def test_aa(self, inpt, interpolation):
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
1049
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)
1050
1051
1052
1053
1054
1055
1056
1057

        torch.manual_seed(12)
        expected_output = t_ref(inpt)

        torch.manual_seed(12)
        output = t(inpt)

        assert_equal(expected_output, output)
1058
1059


1060
def import_transforms_from_references(reference):
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
1071
1072
1073


det_transforms = import_transforms_from_references("detection")
1074
1075
1076
1077
1078
1079
1080


class TestRefDetTransforms:
    def make_datapoints(self, with_mask=True):
        size = (600, 800)
        num_objects = 22

1081
1082
1083
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

1084
        pil_image = to_image_pil(make_image(size=size, color_space="RGB"))
1085
        target = {
1086
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1087
1088
1089
1090
1091
1092
1093
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

1094
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB"))
1095
        target = {
1096
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1097
1098
1099
1100
1101
1102
1103
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

1104
        datapoint_image = make_image(size=size, color_space="RGB")
1105
        target = {
1106
            "boxes": make_bounding_box(spatial_size=size, format="XYXY", extra_dims=(num_objects,), dtype=torch.float),
1107
1108
1109
1110
1111
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

1112
        yield (datapoint_image, target)
1113
1114
1115
1116

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
1117
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
1118
1119
1120
1121
1122
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
1123
                        v2_transforms.SanitizeBoundingBox(labels_getter=lambda sample: sample[1]["labels"]),
1124
1125
1126
1127
                    ]
                ),
                {"with_mask": False},
            ),
1128
1129
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024)), {}),
1130
1131
1132
1133
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
1134
                v2_transforms.RandomShortestSize(
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
        for dp in self.make_datapoints(**data_kwargs):

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
1152
1153
1154
1155
1156
1157
1158
1159
1160


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
1161
class PadIfSmaller(v2_transforms.Transform):
1162
1163
1164
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
1165
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
1166
1167

    def _get_params(self, sample):
1168
        height, width = query_spatial_size(sample)
1169
1170
1171
1172
1173
1174
1175
1176
1177
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

        fill = self.fill[type(inpt)]
1178
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
1179
1180
1181
1182


class TestRefSegTransforms:
    def make_datapoints(self, supports_pil=True, image_dtype=torch.uint8):
1183
        size = (256, 460)
1184
1185
1186
1187
1188
1189
1190
1191
        num_categories = 21

        conv_fns = []
        if supports_pil:
            conv_fns.append(to_image_pil)
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
1192
            datapoint_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
1193
            datapoint_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
1194

1195
            dp = (conv_fn(datapoint_image), datapoint_mask)
1196
            dp_ref = (
1197
1198
                to_image_pil(datapoint_image) if supports_pil else datapoint_image.as_subclass(torch.Tensor),
                to_image_pil(datapoint_mask),
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
        for dp, dp_ref in self.make_datapoints(**data_kwargs or dict()):

            self.set_seed()
1211
            actual = actual_image, actual_mask = t(dp)
1212
1213

            self.set_seed()
1214
1215
1216
1217
1218
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
1219

1220
            assert_equal(actual, expected)
1221
1222
1223
1224
1225
1226

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
1227
                v2_transforms.RandomHorizontalFlip(p=1.0),
1228
1229
1230
1231
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
1232
                v2_transforms.RandomHorizontalFlip(p=0.0),
1233
1234
1235
1236
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
1237
                v2_transforms.Compose(
1238
                    [
1239
                        PadIfSmaller(size=480, fill=defaultdict(lambda: 0, {datapoints.Mask: 255})),
1240
                        v2_transforms.RandomCrop(size=480),
1241
1242
1243
1244
1245
1246
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1247
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1248
1249
1250
1251
1252
1253
1254
1255
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

    def check_resize(self, mocker, t_ref, t):
1256
        mock = mocker.patch("torchvision.transforms.v2._geometry.F.resize")
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        mock_ref = mocker.patch("torchvision.transforms.functional.resize")

        for dp, dp_ref in self.make_datapoints():
            mock.reset_mock()
            mock_ref.reset_mock()

            self.set_seed()
            t(dp)
            assert mock.call_count == 2
            assert all(
                actual is expected
                for actual, expected in zip([call_args[0][0] for call_args in mock.call_args_list], dp)
            )

            self.set_seed()
            t_ref(*dp_ref)
            assert mock_ref.call_count == 2
            assert all(
                actual is expected
                for actual, expected in zip([call_args[0][0] for call_args in mock_ref.call_args_list], dp_ref)
            )

            for args_kwargs, args_kwargs_ref in zip(mock.call_args_list, mock_ref.call_args_list):
                assert args_kwargs[0][1] == [args_kwargs_ref[0][1]]

    def test_random_resize_train(self, mocker):
        base_size = 520
        min_size = base_size // 2
        max_size = base_size * 2

        randint = torch.randint

        def patched_randint(a, b, *other_args, **kwargs):
            if kwargs or len(other_args) > 1 or other_args[0] != ():
                return randint(a, b, *other_args, **kwargs)

            return random.randint(a, b)

        # We are patching torch.randint -> random.randint here, because we can't patch the modules that are not imported
        # normally
1297
        t = v2_transforms.RandomResize(min_size=min_size, max_size=max_size, antialias=True)
1298
        mocker.patch(
1299
            "torchvision.transforms.v2._geometry.torch.randint",
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
            new=patched_randint,
        )

        t_ref = seg_transforms.RandomResize(min_size=min_size, max_size=max_size)

        self.check_resize(mocker, t_ref, t)

    def test_random_resize_eval(self, mocker):
        torch.manual_seed(0)
        base_size = 520

1311
        t = v2_transforms.Resize(size=base_size, antialias=True)
1312
1313
1314
1315

        t_ref = seg_transforms.RandomResize(min_size=base_size, max_size=base_size)

        self.check_resize(mocker, t_ref, t)
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328


@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
1329
        (legacy_F.resize, {"interpolation"}),
1330
1331
1332
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
1333
        (legacy_F.resized_crop, {"interpolation"}),
1334
        (legacy_F.hflip, {}),
1335
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
1336
1337
1338
1339
1340
1341
1342
1343
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
1344
1345
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
1357
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params