test_transforms_v2_consistency.py 46.7 KB
Newer Older
1
2
import importlib.machinery
import importlib.util
3
import inspect
4
import random
5
import re
6
from pathlib import Path
7

8
import numpy as np
9
import PIL.Image
10
import pytest
11
12

import torch
13
import torchvision.transforms.v2 as v2_transforms
14
from common_utils import assert_close, assert_equal, set_rng_seed
15
from torch import nn
16
from torchvision import datapoints, transforms as legacy_transforms
17
from torchvision._utils import sequence_to_str
18

19
from torchvision.transforms import functional as legacy_F
20
from torchvision.transforms.v2 import functional as prototype_F
Nicolas Hug's avatar
Nicolas Hug committed
21
from torchvision.transforms.v2._utils import _get_fill, query_size
22
from torchvision.transforms.v2.functional import to_pil_image
23
24
25
26
27
28
29
30
from transforms_v2_legacy_utils import (
    ArgsKwargs,
    make_bounding_boxes,
    make_detection_mask,
    make_image,
    make_images,
    make_segmentation_mask,
)
31

32
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
33
34


Nicolas Hug's avatar
Nicolas Hug committed
35
36
37
38
39
40
@pytest.fixture(autouse=True)
def fix_rng_seed():
    set_rng_seed(0)
    yield


41
42
43
44
45
46
47
48
49
class NotScriptableArgsKwargs(ArgsKwargs):
    """
    This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
    thus will be tested there, but will be skipped by the JIT tests.
    """

    pass


50
51
class ConsistencyConfig:
    def __init__(
52
53
54
        self,
        prototype_cls,
        legacy_cls,
55
56
        # If no args_kwargs is passed, only the signature will be checked
        args_kwargs=(),
57
58
59
        make_images_kwargs=None,
        supports_pil=True,
        removed_params=(),
60
        closeness_kwargs=None,
61
62
63
    ):
        self.prototype_cls = prototype_cls
        self.legacy_cls = legacy_cls
64
        self.args_kwargs = args_kwargs
65
66
        self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
        self.supports_pil = supports_pil
67
        self.removed_params = removed_params
68
        self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
69
70


71
72
73
74
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)

75
76
CONSISTENCY_CONFIGS = [
    ConsistencyConfig(
77
        v2_transforms.Normalize,
78
79
80
81
82
83
84
85
        legacy_transforms.Normalize,
        [
            ArgsKwargs(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        ],
        supports_pil=False,
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.float]),
    ),
    ConsistencyConfig(
86
        v2_transforms.CenterCrop,
87
88
89
90
91
92
        legacy_transforms.CenterCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
    ),
93
    ConsistencyConfig(
94
        v2_transforms.FiveCrop,
95
96
97
98
99
100
101
102
        legacy_transforms.FiveCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
103
        v2_transforms.TenCrop,
104
105
106
107
        legacy_transforms.TenCrop,
        [
            ArgsKwargs(18),
            ArgsKwargs((18, 13)),
108
            ArgsKwargs(18, vertical_flip=True),
109
110
111
112
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(20, 19)]),
    ),
    ConsistencyConfig(
113
        v2_transforms.Pad,
114
115
        legacy_transforms.Pad,
        [
116
            NotScriptableArgsKwargs(3),
117
118
119
            ArgsKwargs([3]),
            ArgsKwargs([2, 3]),
            ArgsKwargs([3, 2, 1, 4]),
120
121
122
123
124
            NotScriptableArgsKwargs(5, fill=1, padding_mode="constant"),
            ArgsKwargs([5], fill=1, padding_mode="constant"),
            NotScriptableArgsKwargs(5, padding_mode="edge"),
            NotScriptableArgsKwargs(5, padding_mode="reflect"),
            NotScriptableArgsKwargs(5, padding_mode="symmetric"),
125
126
        ],
    ),
127
128
    *[
        ConsistencyConfig(
129
            v2_transforms.LinearTransformation,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            legacy_transforms.LinearTransformation,
            [
                ArgsKwargs(LINEAR_TRANSFORMATION_MATRIX.to(matrix_dtype), LINEAR_TRANSFORMATION_MEAN.to(matrix_dtype)),
            ],
            # Make sure that the product of the height, width and number of channels matches the number of elements in
            # `LINEAR_TRANSFORMATION_MEAN`. For example 2 * 6 * 3 == 4 * 3 * 3 == 36.
            make_images_kwargs=dict(
                DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(2, 6), (4, 3)], color_spaces=["RGB"], dtypes=[image_dtype]
            ),
            supports_pil=False,
        )
        for matrix_dtype, image_dtype in [
            (torch.float32, torch.float32),
            (torch.float64, torch.float64),
            (torch.float32, torch.uint8),
            (torch.float64, torch.float32),
            (torch.float32, torch.float64),
        ]
    ],
149
    ConsistencyConfig(
150
        v2_transforms.Grayscale,
151
152
153
154
155
        legacy_transforms.Grayscale,
        [
            ArgsKwargs(num_output_channels=1),
            ArgsKwargs(num_output_channels=3),
        ],
156
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
157
158
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
159
    ),
160
    ConsistencyConfig(
161
        v2_transforms.ToPILImage,
162
        legacy_transforms.ToPILImage,
163
        [NotScriptableArgsKwargs()],
164
165
        make_images_kwargs=dict(
            color_spaces=[
166
167
168
169
                "GRAY",
                "GRAY_ALPHA",
                "RGB",
                "RGBA",
170
171
172
173
174
175
            ],
            extra_dims=[()],
        ),
        supports_pil=False,
    ),
    ConsistencyConfig(
176
        v2_transforms.Lambda,
177
178
        legacy_transforms.Lambda,
        [
179
            NotScriptableArgsKwargs(lambda image: image / 2),
180
181
182
183
184
        ],
        # Technically, this also supports PIL, but it is overkill to write a function here that supports tensor and PIL
        # images given that the transform does nothing but call it anyway.
        supports_pil=False,
    ),
185
    ConsistencyConfig(
186
        v2_transforms.RandomEqualize,
187
188
189
190
191
192
193
194
        legacy_transforms.RandomEqualize,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
195
        v2_transforms.RandomInvert,
196
197
198
199
200
201
202
        legacy_transforms.RandomInvert,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
    ),
    ConsistencyConfig(
203
        v2_transforms.RandomPosterize,
204
205
206
207
208
209
210
211
212
        legacy_transforms.RandomPosterize,
        [
            ArgsKwargs(p=0, bits=5),
            ArgsKwargs(p=1, bits=1),
            ArgsKwargs(p=1, bits=3),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[torch.uint8]),
    ),
    ConsistencyConfig(
213
        v2_transforms.RandomSolarize,
214
215
216
217
218
219
220
        legacy_transforms.RandomSolarize,
        [
            ArgsKwargs(p=0, threshold=0.5),
            ArgsKwargs(p=1, threshold=0.3),
            ArgsKwargs(p=1, threshold=0.99),
        ],
    ),
221
222
    *[
        ConsistencyConfig(
223
            v2_transforms.RandomAutocontrast,
224
225
226
227
228
229
230
231
232
233
            legacy_transforms.RandomAutocontrast,
            [
                ArgsKwargs(p=0),
                ArgsKwargs(p=1),
            ],
            make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, dtypes=[dt]),
            closeness_kwargs=ckw,
        )
        for dt, ckw in [(torch.uint8, dict(atol=1, rtol=0)), (torch.float32, dict(rtol=None, atol=None))]
    ],
234
    ConsistencyConfig(
235
        v2_transforms.RandomAdjustSharpness,
236
237
238
        legacy_transforms.RandomAdjustSharpness,
        [
            ArgsKwargs(p=0, sharpness_factor=0.5),
239
            ArgsKwargs(p=1, sharpness_factor=0.2),
240
241
            ArgsKwargs(p=1, sharpness_factor=0.99),
        ],
242
        closeness_kwargs={"atol": 1e-6, "rtol": 1e-6},
243
244
    ),
    ConsistencyConfig(
245
        v2_transforms.RandomGrayscale,
246
247
248
249
250
        legacy_transforms.RandomGrayscale,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
        ],
251
252
253
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, color_spaces=["RGB", "GRAY"]),
        # Use default tolerances of `torch.testing.assert_close`
        closeness_kwargs=dict(rtol=None, atol=None),
254
255
    ),
    ConsistencyConfig(
256
        v2_transforms.RandomResizedCrop,
257
258
259
260
261
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs(16),
            ArgsKwargs(17, scale=(0.3, 0.7)),
            ArgsKwargs(25, ratio=(0.5, 1.5)),
262
            ArgsKwargs((31, 28), interpolation=v2_transforms.InterpolationMode.NEAREST),
263
            ArgsKwargs((31, 28), interpolation=PIL.Image.NEAREST),
264
265
266
            ArgsKwargs((29, 32), antialias=False),
            ArgsKwargs((28, 31), antialias=True),
        ],
267
268
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        closeness_kwargs=dict(rtol=0, atol=1),
269
    ),
270
271
272
273
274
275
276
277
278
    ConsistencyConfig(
        v2_transforms.RandomResizedCrop,
        legacy_transforms.RandomResizedCrop,
        [
            ArgsKwargs((33, 26), interpolation=v2_transforms.InterpolationMode.BICUBIC, antialias=True),
            ArgsKwargs((33, 26), interpolation=PIL.Image.BICUBIC, antialias=True),
        ],
        closeness_kwargs=dict(rtol=0, atol=21),
    ),
279
    ConsistencyConfig(
280
        v2_transforms.RandomErasing,
281
282
283
284
285
286
287
288
289
290
291
292
293
        legacy_transforms.RandomErasing,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, scale=(0.3, 0.7)),
            ArgsKwargs(p=1, ratio=(0.5, 1.5)),
            ArgsKwargs(p=1, value=1),
            ArgsKwargs(p=1, value=(1, 2, 3)),
            ArgsKwargs(p=1, value="random"),
        ],
        supports_pil=False,
    ),
    ConsistencyConfig(
294
        v2_transforms.ColorJitter,
295
296
297
298
299
300
301
302
303
304
305
        legacy_transforms.ColorJitter,
        [
            ArgsKwargs(),
            ArgsKwargs(brightness=0.1),
            ArgsKwargs(brightness=(0.2, 0.3)),
            ArgsKwargs(contrast=0.4),
            ArgsKwargs(contrast=(0.5, 0.6)),
            ArgsKwargs(saturation=0.7),
            ArgsKwargs(saturation=(0.8, 0.9)),
            ArgsKwargs(hue=0.3),
            ArgsKwargs(hue=(-0.1, 0.2)),
306
            ArgsKwargs(brightness=0.1, contrast=0.4, saturation=0.5, hue=0.3),
307
        ],
308
        closeness_kwargs={"atol": 1e-5, "rtol": 1e-5},
309
310
    ),
    ConsistencyConfig(
311
        v2_transforms.GaussianBlur,
312
313
314
315
316
317
318
        legacy_transforms.GaussianBlur,
        [
            ArgsKwargs(kernel_size=3),
            ArgsKwargs(kernel_size=(1, 5)),
            ArgsKwargs(kernel_size=3, sigma=0.7),
            ArgsKwargs(kernel_size=5, sigma=(0.3, 1.4)),
        ],
319
        closeness_kwargs={"rtol": 1e-5, "atol": 1e-5},
320
321
    ),
    ConsistencyConfig(
322
        v2_transforms.RandomCrop,
323
324
325
326
        legacy_transforms.RandomCrop,
        [
            ArgsKwargs(12),
            ArgsKwargs((15, 17)),
327
328
            NotScriptableArgsKwargs(11, padding=1),
            ArgsKwargs(11, padding=[1]),
329
330
331
332
            ArgsKwargs((8, 13), padding=(2, 3)),
            ArgsKwargs((14, 9), padding=(0, 2, 1, 0)),
            ArgsKwargs(36, pad_if_needed=True),
            ArgsKwargs((7, 8), fill=1),
333
            NotScriptableArgsKwargs(5, fill=(1, 2, 3)),
334
            ArgsKwargs(12),
335
            NotScriptableArgsKwargs(15, padding=2, padding_mode="edge"),
336
337
338
339
340
341
            ArgsKwargs(17, padding=(1, 0), padding_mode="reflect"),
            ArgsKwargs(8, padding=(3, 0, 0, 1), padding_mode="symmetric"),
        ],
        make_images_kwargs=dict(DEFAULT_MAKE_IMAGES_KWARGS, sizes=[(26, 26), (18, 33), (29, 22)]),
    ),
    ConsistencyConfig(
342
        v2_transforms.RandomPerspective,
343
344
345
346
347
        legacy_transforms.RandomPerspective,
        [
            ArgsKwargs(p=0),
            ArgsKwargs(p=1),
            ArgsKwargs(p=1, distortion_scale=0.3),
348
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=v2_transforms.InterpolationMode.NEAREST),
349
            ArgsKwargs(p=1, distortion_scale=0.2, interpolation=PIL.Image.NEAREST),
350
351
352
            ArgsKwargs(p=1, distortion_scale=0.1, fill=1),
            ArgsKwargs(p=1, distortion_scale=0.4, fill=(1, 2, 3)),
        ],
353
        closeness_kwargs={"atol": None, "rtol": None},
354
    ),
355
    ConsistencyConfig(
356
        v2_transforms.PILToTensor,
357
358
359
        legacy_transforms.PILToTensor,
    ),
    ConsistencyConfig(
360
        v2_transforms.ToTensor,
361
362
363
        legacy_transforms.ToTensor,
    ),
    ConsistencyConfig(
364
        v2_transforms.Compose,
365
366
367
        legacy_transforms.Compose,
    ),
    ConsistencyConfig(
368
        v2_transforms.RandomApply,
369
370
371
        legacy_transforms.RandomApply,
    ),
    ConsistencyConfig(
372
        v2_transforms.RandomChoice,
373
374
375
        legacy_transforms.RandomChoice,
    ),
    ConsistencyConfig(
376
        v2_transforms.RandomOrder,
377
378
379
        legacy_transforms.RandomOrder,
    ),
    ConsistencyConfig(
380
        v2_transforms.AugMix,
381
382
383
        legacy_transforms.AugMix,
    ),
    ConsistencyConfig(
384
        v2_transforms.AutoAugment,
385
386
387
        legacy_transforms.AutoAugment,
    ),
    ConsistencyConfig(
388
        v2_transforms.RandAugment,
389
390
391
        legacy_transforms.RandAugment,
    ),
    ConsistencyConfig(
392
        v2_transforms.TrivialAugmentWide,
393
394
        legacy_transforms.TrivialAugmentWide,
    ),
395
396
397
]


398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
@pytest.mark.parametrize("config", CONSISTENCY_CONFIGS, ids=lambda config: config.legacy_cls.__name__)
def test_signature_consistency(config):
    legacy_params = dict(inspect.signature(config.legacy_cls).parameters)
    prototype_params = dict(inspect.signature(config.prototype_cls).parameters)

    for param in config.removed_params:
        legacy_params.pop(param, None)

    missing = legacy_params.keys() - prototype_params.keys()
    if missing:
        raise AssertionError(
            f"The prototype transform does not support the parameters "
            f"{sequence_to_str(sorted(missing), separate_last='and ')}, but the legacy transform does. "
            f"If that is intentional, e.g. pending deprecation, please add the parameters to the `removed_params` on "
            f"the `ConsistencyConfig`."
        )

    extra = prototype_params.keys() - legacy_params.keys()
416
417
418
419
420
421
    extra_without_default = {
        param
        for param in extra
        if prototype_params[param].default is inspect.Parameter.empty
        and prototype_params[param].kind not in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}
    }
422
423
    if extra_without_default:
        raise AssertionError(
424
425
426
            f"The prototype transform requires the parameters "
            f"{sequence_to_str(sorted(extra_without_default), separate_last='and ')}, but the legacy transform does "
            f"not. Please add a default value."
427
428
        )

429
430
431
432
433
434
    legacy_signature = list(legacy_params.keys())
    # Since we made sure that we don't have any extra parameters without default above, we clamp the prototype signature
    # to the same number of parameters as the legacy one
    prototype_signature = list(prototype_params.keys())[: len(legacy_signature)]

    assert prototype_signature == legacy_signature
435
436


437
438
439
def check_call_consistency(
    prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
440
441
    if images is None:
        images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
442

443
444
    closeness_kwargs = closeness_kwargs or dict()

445
446
    for image in images:
        image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
447
448
449

        image_tensor = torch.Tensor(image)
        try:
450
            torch.manual_seed(0)
451
            output_legacy_tensor = legacy_transform(image_tensor)
452
453
        except Exception as exc:
            raise pytest.UsageError(
454
                f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
455
                f"error above. This means that you need to specify the parameters passed to `make_images` through the "
456
457
458
459
                "`make_images_kwargs` of the `ConsistencyConfig`."
            ) from exc

        try:
460
            torch.manual_seed(0)
461
            output_prototype_tensor = prototype_transform(image_tensor)
462
463
        except Exception as exc:
            raise AssertionError(
464
                f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
465
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
466
                f"`is_pure_tensor` path in `_transform`."
467
468
            ) from exc

469
        assert_close(
470
471
472
            output_prototype_tensor,
            output_legacy_tensor,
            msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
473
            **closeness_kwargs,
474
475
476
        )

        try:
477
            torch.manual_seed(0)
478
            output_prototype_image = prototype_transform(image)
479
480
        except Exception as exc:
            raise AssertionError(
481
                f"Transforming a image datapoint with shape {image_repr} failed in the prototype transform with "
482
                f"the error above. This means there is a consistency bug either in `_get_params` or in the "
483
                f"`datapoints.Image` path in `_transform`."
484
485
            ) from exc

486
        assert_close(
487
            output_prototype_image,
488
            output_prototype_tensor,
489
            msg=lambda msg: f"Output for datapoint and tensor images is not equal: \n\n{msg}",
490
            **closeness_kwargs,
491
492
        )

493
        if image.ndim == 3 and supports_pil:
494
            image_pil = to_pil_image(image)
495

496
            try:
497
                torch.manual_seed(0)
498
                output_legacy_pil = legacy_transform(image_pil)
499
500
            except Exception as exc:
                raise pytest.UsageError(
501
                    f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
502
503
504
505
506
                    f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
                    "`ConsistencyConfig`. "
                ) from exc

            try:
507
                torch.manual_seed(0)
508
                output_prototype_pil = prototype_transform(image_pil)
509
510
            except Exception as exc:
                raise AssertionError(
511
                    f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
512
513
514
515
                    f"the error above. This means there is a consistency bug either in `_get_params` or in the "
                    f"`PIL.Image.Image` path in `_transform`."
                ) from exc

516
            assert_close(
517
518
                output_prototype_pil,
                output_legacy_pil,
519
                msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
520
                **closeness_kwargs,
521
            )
522
523


524
@pytest.mark.parametrize(
525
526
    ("config", "args_kwargs"),
    [
527
528
529
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
530
        for config in CONSISTENCY_CONFIGS
531
        for idx, args_kwargs in enumerate(config.args_kwargs)
532
    ],
533
)
534
@pytest.mark.filterwarnings("ignore")
535
def test_call_consistency(config, args_kwargs):
536
537
538
    args, kwargs = args_kwargs

    try:
539
        legacy_transform = config.legacy_cls(*args, **kwargs)
540
541
542
543
544
545
546
    except Exception as exc:
        raise pytest.UsageError(
            f"Initializing the legacy transform failed with the error above. "
            f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
        ) from exc

    try:
547
        prototype_transform = config.prototype_cls(*args, **kwargs)
548
549
550
551
552
553
    except Exception as exc:
        raise AssertionError(
            "Initializing the prototype transform failed with the error above. "
            "This means there is a consistency bug in the constructor."
        ) from exc

554
555
556
557
558
    check_call_consistency(
        prototype_transform,
        legacy_transform,
        images=make_images(**config.make_images_kwargs),
        supports_pil=config.supports_pil,
559
        closeness_kwargs=config.closeness_kwargs,
560
561
562
    )


563
564
565
566
567
568
569
570
571
get_params_parametrization = pytest.mark.parametrize(
    ("config", "get_params_args_kwargs"),
    [
        pytest.param(
            next(config for config in CONSISTENCY_CONFIGS if config.prototype_cls is transform_cls),
            get_params_args_kwargs,
            id=transform_cls.__name__,
        )
        for transform_cls, get_params_args_kwargs in [
572
573
574
575
576
577
578
            (v2_transforms.RandomResizedCrop, ArgsKwargs(make_image(), scale=[0.3, 0.7], ratio=[0.5, 1.5])),
            (v2_transforms.RandomErasing, ArgsKwargs(make_image(), scale=(0.3, 0.7), ratio=(0.5, 1.5))),
            (v2_transforms.ColorJitter, ArgsKwargs(brightness=None, contrast=None, saturation=None, hue=None)),
            (v2_transforms.GaussianBlur, ArgsKwargs(0.3, 1.4)),
            (v2_transforms.RandomCrop, ArgsKwargs(make_image(size=(61, 47)), output_size=(19, 25))),
            (v2_transforms.RandomPerspective, ArgsKwargs(23, 17, 0.5)),
            (v2_transforms.AutoAugment, ArgsKwargs(5)),
579
580
        ]
    ],
581
)
582
583


584
@get_params_parametrization
585
def test_get_params_alias(config, get_params_args_kwargs):
586
587
    assert config.prototype_cls.get_params is config.legacy_cls.get_params

588
589
590
591
592
    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    legacy_transform = config.legacy_cls(*args, **kwargs)
    prototype_transform = config.prototype_cls(*args, **kwargs)
593

594
595
596
    assert prototype_transform.get_params is legacy_transform.get_params


597
@get_params_parametrization
598
599
600
601
602
603
604
605
606
def test_get_params_jit(config, get_params_args_kwargs):
    get_params_args, get_params_kwargs = get_params_args_kwargs

    torch.jit.script(config.prototype_cls.get_params)(*get_params_args, **get_params_kwargs)

    if not config.args_kwargs:
        return
    args, kwargs = config.args_kwargs[0]
    transform = config.prototype_cls(*args, **kwargs)
607

608
    torch.jit.script(transform.get_params)(*get_params_args, **get_params_kwargs)
609
610


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
@pytest.mark.parametrize(
    ("config", "args_kwargs"),
    [
        pytest.param(
            config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
        )
        for config in CONSISTENCY_CONFIGS
        for idx, args_kwargs in enumerate(config.args_kwargs)
        if not isinstance(args_kwargs, NotScriptableArgsKwargs)
    ],
)
def test_jit_consistency(config, args_kwargs):
    args, kwargs = args_kwargs

    prototype_transform_eager = config.prototype_cls(*args, **kwargs)
    legacy_transform_eager = config.legacy_cls(*args, **kwargs)

    legacy_transform_scripted = torch.jit.script(legacy_transform_eager)
    prototype_transform_scripted = torch.jit.script(prototype_transform_eager)

    for image in make_images(**config.make_images_kwargs):
        image = image.as_subclass(torch.Tensor)

        torch.manual_seed(0)
        output_legacy_scripted = legacy_transform_scripted(image)

        torch.manual_seed(0)
        output_prototype_scripted = prototype_transform_scripted(image)

        assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)


643
644
645
646
647
648
649
650
651
652
class TestContainerTransforms:
    """
    Since we are testing containers here, we also need some transforms to wrap. Thus, testing a container transform for
    consistency automatically tests the wrapped transforms consistency.

    Instead of complicated mocking or creating custom transforms just for these tests, here we use deterministic ones
    that were already tested for consistency above.
    """

    def test_compose(self):
653
        prototype_transform = v2_transforms.Compose(
654
            [
655
656
                v2_transforms.Resize(256),
                v2_transforms.CenterCrop(224),
657
658
659
660
661
662
663
664
665
            ]
        )
        legacy_transform = legacy_transforms.Compose(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ]
        )

666
667
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
668
669

    @pytest.mark.parametrize("p", [0, 0.1, 0.5, 0.9, 1])
670
671
    @pytest.mark.parametrize("sequence_type", [list, nn.ModuleList])
    def test_random_apply(self, p, sequence_type):
672
        prototype_transform = v2_transforms.RandomApply(
673
674
            sequence_type(
                [
675
676
                    v2_transforms.Resize(256),
                    v2_transforms.CenterCrop(224),
677
678
                ]
            ),
679
680
681
            p=p,
        )
        legacy_transform = legacy_transforms.RandomApply(
682
683
684
685
686
687
            sequence_type(
                [
                    legacy_transforms.Resize(256),
                    legacy_transforms.CenterCrop(224),
                ]
            ),
688
689
690
            p=p,
        )

691
692
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
693

694
695
696
697
698
        if sequence_type is nn.ModuleList:
            # quick and dirty test that it is jit-scriptable
            scripted = torch.jit.script(prototype_transform)
            scripted(torch.rand(1, 3, 300, 300))

699
    # We can't test other values for `p` since the random parameter generation is different
700
701
    @pytest.mark.parametrize("probabilities", [(0, 1), (1, 0)])
    def test_random_choice(self, probabilities):
702
        prototype_transform = v2_transforms.RandomChoice(
703
            [
704
                v2_transforms.Resize(256),
705
706
                legacy_transforms.CenterCrop(224),
            ],
707
            p=probabilities,
708
709
710
711
712
713
        )
        legacy_transform = legacy_transforms.RandomChoice(
            [
                legacy_transforms.Resize(256),
                legacy_transforms.CenterCrop(224),
            ],
714
            p=probabilities,
715
716
        )

717
718
        # atol=1 due to Resize v2 is using native uint8 interpolate path for bilinear and nearest modes
        check_call_consistency(prototype_transform, legacy_transform, closeness_kwargs=dict(rtol=0, atol=1))
719
720


721
722
class TestToTensorTransforms:
    def test_pil_to_tensor(self):
723
        prototype_transform = v2_transforms.PILToTensor()
724
725
        legacy_transform = legacy_transforms.PILToTensor()

726
        for image in make_images(extra_dims=[()]):
727
            image_pil = to_pil_image(image)
728
729
730
731

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))

    def test_to_tensor(self):
732
        with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
733
            prototype_transform = v2_transforms.ToTensor()
734
735
        legacy_transform = legacy_transforms.ToTensor()

736
        for image in make_images(extra_dims=[()]):
737
            image_pil = to_pil_image(image)
738
739
740
741
            image_numpy = np.array(image_pil)

            assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
            assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
742
743
744
745
746
747
748
749


class TestAATransforms:
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
750
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
751
752
753
754
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
755
        [
756
757
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
758
759
            PIL.Image.NEAREST,
        ],
760
761
762
    )
    def test_randaug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
763
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            # Stable API, if signed there is another random call
            if t._AUGMENTATION_SPACE[keys[i]][1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for i in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

785
            assert_close(expected_output, output, atol=1, rtol=0.1)
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_randaug_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        t_ref = legacy_transforms.RandAugment(interpolation=interpolation, num_ops=1)
        t = v2_transforms.RandAugment(interpolation=interpolation, num_ops=1)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

810
811
812
813
814
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
815
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
816
817
818
819
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
820
        [
821
822
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
823
824
            PIL.Image.NEAREST,
        ],
825
826
827
    )
    def test_trivial_aug(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
828
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        for _ in range(le):
            expected_output = t_ref(inpt)
            output = t(inpt)

860
            assert_close(expected_output, output, atol=1, rtol=0.1)
861

862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_trivial_aug_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        t_ref = legacy_transforms.TrivialAugmentWide(interpolation=interpolation)
        t = v2_transforms.TrivialAugmentWide(interpolation=interpolation)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

885
886
887
888
889
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
890
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
891
892
893
894
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
895
        [
896
897
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
898
899
            PIL.Image.NEAREST,
        ],
900
901
902
903
    )
    def test_augmix(self, inpt, interpolation, mocker):
        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t_ref._sample_dirichlet = lambda t: t.softmax(dim=-1)
904
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
        t._sample_dirichlet = lambda t: t.softmax(dim=-1)

        le = len(t._AUGMENTATION_SPACE)
        keys = list(t._AUGMENTATION_SPACE.keys())
        randint_values = []
        for i in range(le):
            # Stable API, op_index random call
            randint_values.append(i)
            key = keys[i]
            # Stable API, random magnitude
            aug_op = t._AUGMENTATION_SPACE[key]
            magnitudes = aug_op[0](2, 0, 0)
            if magnitudes is not None:
                randint_values.append(5)
            # Stable API, if signed there is another random call
            if aug_op[1]:
                randint_values.append(0)
            # New API, _get_random_item
            randint_values.append(i)
            # New API, random magnitude
            if magnitudes is not None:
                randint_values.append(5)

        randint_values = iter(randint_values)

        mocker.patch("torch.randint", side_effect=lambda *arg, **kwargs: torch.tensor(next(randint_values)))
        mocker.patch("torch.rand", return_value=1.0)

        expected_output = t_ref(inpt)
        output = t(inpt)

        assert_equal(expected_output, output)

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_augmix_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)

        t_ref = legacy_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)
        t = v2_transforms.AugMix(interpolation=interpolation, mixture_width=1, chain_depth=1)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

962
963
964
965
966
    @pytest.mark.parametrize(
        "inpt",
        [
            torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8),
            PIL.Image.new("RGB", (256, 256), 123),
967
            datapoints.Image(torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)),
968
969
970
971
        ],
    )
    @pytest.mark.parametrize(
        "interpolation",
972
        [
973
974
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
975
976
            PIL.Image.NEAREST,
        ],
977
978
979
980
    )
    def test_aa(self, inpt, interpolation):
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
981
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)
982
983
984
985
986
987
988
989

        torch.manual_seed(12)
        expected_output = t_ref(inpt)

        torch.manual_seed(12)
        output = t(inpt)

        assert_equal(expected_output, output)
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    @pytest.mark.parametrize(
        "interpolation",
        [
            v2_transforms.InterpolationMode.NEAREST,
            v2_transforms.InterpolationMode.BILINEAR,
        ],
    )
    def test_aa_jit(self, interpolation):
        inpt = torch.randint(0, 256, size=(1, 3, 256, 256), dtype=torch.uint8)
        aa_policy = legacy_transforms.AutoAugmentPolicy("imagenet")
        t_ref = legacy_transforms.AutoAugment(aa_policy, interpolation=interpolation)
        t = v2_transforms.AutoAugment(aa_policy, interpolation=interpolation)

        tt_ref = torch.jit.script(t_ref)
        tt = torch.jit.script(t)

        torch.manual_seed(12)
        expected_output = tt_ref(inpt)

        torch.manual_seed(12)
        scripted_output = tt(inpt)

        assert_equal(scripted_output, expected_output)

1015

1016
def import_transforms_from_references(reference):
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    HERE = Path(__file__).parent
    PROJECT_ROOT = HERE.parent

    loader = importlib.machinery.SourceFileLoader(
        "transforms", str(PROJECT_ROOT / "references" / reference / "transforms.py")
    )
    spec = importlib.util.spec_from_loader("transforms", loader)
    module = importlib.util.module_from_spec(spec)
    loader.exec_module(module)
    return module
1027
1028
1029


det_transforms = import_transforms_from_references("detection")
1030
1031
1032
1033
1034
1035
1036


class TestRefDetTransforms:
    def make_datapoints(self, with_mask=True):
        size = (600, 800)
        num_objects = 22

1037
1038
1039
        def make_label(extra_dims, categories):
            return torch.randint(categories, extra_dims, dtype=torch.int64)

1040
        pil_image = to_pil_image(make_image(size=size, color_space="RGB"))
1041
        target = {
1042
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1043
1044
1045
1046
1047
1048
1049
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (pil_image, target)

1050
        tensor_image = torch.Tensor(make_image(size=size, color_space="RGB", dtype=torch.float32))
1051
        target = {
1052
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1053
1054
1055
1056
1057
1058
1059
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

        yield (tensor_image, target)

1060
        datapoint_image = make_image(size=size, color_space="RGB", dtype=torch.float32)
1061
        target = {
1062
            "boxes": make_bounding_boxes(canvas_size=size, format="XYXY", batch_dims=(num_objects,), dtype=torch.float),
1063
1064
1065
1066
1067
            "labels": make_label(extra_dims=(num_objects,), categories=80),
        }
        if with_mask:
            target["masks"] = make_detection_mask(size=size, num_objects=num_objects, dtype=torch.long)

1068
        yield (datapoint_image, target)
1069
1070
1071
1072

    @pytest.mark.parametrize(
        "t_ref, t, data_kwargs",
        [
1073
            (det_transforms.RandomHorizontalFlip(p=1.0), v2_transforms.RandomHorizontalFlip(p=1.0), {}),
1074
1075
1076
1077
1078
            (
                det_transforms.RandomIoUCrop(),
                v2_transforms.Compose(
                    [
                        v2_transforms.RandomIoUCrop(),
1079
                        v2_transforms.SanitizeBoundingBoxes(labels_getter=lambda sample: sample[1]["labels"]),
1080
1081
1082
1083
                    ]
                ),
                {"with_mask": False},
            ),
1084
            (det_transforms.RandomZoomOut(), v2_transforms.RandomZoomOut(), {"with_mask": False}),
1085
            (det_transforms.ScaleJitter((1024, 1024)), v2_transforms.ScaleJitter((1024, 1024), antialias=True), {}),
1086
1087
1088
1089
            (
                det_transforms.RandomShortestSize(
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
1090
                v2_transforms.RandomShortestSize(
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
                    min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333
                ),
                {},
            ),
        ],
    )
    def test_transform(self, t_ref, t, data_kwargs):
        for dp in self.make_datapoints(**data_kwargs):

            # We should use prototype transform first as reference transform performs inplace target update
            torch.manual_seed(12)
            output = t(dp)

            torch.manual_seed(12)
            expected_output = t_ref(*dp)

            assert_equal(expected_output, output)
1108
1109
1110
1111
1112
1113
1114
1115
1116


seg_transforms = import_transforms_from_references("segmentation")


# We need this transform for two reasons:
# 1. transforms.RandomCrop uses a different scheme to pad images and masks of insufficient size than its name
#    counterpart in the detection references. Thus, we cannot use it with `pad_if_needed=True`
# 2. transforms.Pad only supports a fixed padding, but the segmentation datasets don't have a fixed image size.
1117
class PadIfSmaller(v2_transforms.Transform):
1118
1119
1120
    def __init__(self, size, fill=0):
        super().__init__()
        self.size = size
1121
        self.fill = v2_transforms._geometry._setup_fill_arg(fill)
1122
1123

    def _get_params(self, sample):
Philip Meier's avatar
Philip Meier committed
1124
        height, width = query_size(sample)
1125
1126
1127
1128
1129
1130
1131
1132
        padding = [0, 0, max(self.size - width, 0), max(self.size - height, 0)]
        needs_padding = any(padding)
        return dict(padding=padding, needs_padding=needs_padding)

    def _transform(self, inpt, params):
        if not params["needs_padding"]:
            return inpt

1133
        fill = _get_fill(self.fill, type(inpt))
1134
        return prototype_F.pad(inpt, padding=params["padding"], fill=fill)
1135
1136
1137
1138


class TestRefSegTransforms:
    def make_datapoints(self, supports_pil=True, image_dtype=torch.uint8):
1139
        size = (256, 460)
1140
1141
1142
1143
        num_categories = 21

        conv_fns = []
        if supports_pil:
1144
            conv_fns.append(to_pil_image)
1145
1146
1147
        conv_fns.extend([torch.Tensor, lambda x: x])

        for conv_fn in conv_fns:
1148
            datapoint_image = make_image(size=size, color_space="RGB", dtype=image_dtype)
1149
            datapoint_mask = make_segmentation_mask(size=size, num_categories=num_categories, dtype=torch.uint8)
1150

1151
            dp = (conv_fn(datapoint_image), datapoint_mask)
1152
            dp_ref = (
1153
1154
                to_pil_image(datapoint_image) if supports_pil else datapoint_image.as_subclass(torch.Tensor),
                to_pil_image(datapoint_mask),
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
            )

            yield dp, dp_ref

    def set_seed(self, seed=12):
        torch.manual_seed(seed)
        random.seed(seed)

    def check(self, t, t_ref, data_kwargs=None):
        for dp, dp_ref in self.make_datapoints(**data_kwargs or dict()):

            self.set_seed()
1167
            actual = actual_image, actual_mask = t(dp)
1168
1169

            self.set_seed()
1170
1171
1172
1173
1174
            expected_image, expected_mask = t_ref(*dp_ref)
            if isinstance(actual_image, torch.Tensor) and not isinstance(expected_image, torch.Tensor):
                expected_image = legacy_F.pil_to_tensor(expected_image)
            expected_mask = legacy_F.pil_to_tensor(expected_mask).squeeze(0)
            expected = (expected_image, expected_mask)
1175

1176
            assert_equal(actual, expected)
1177
1178
1179
1180
1181
1182

    @pytest.mark.parametrize(
        ("t_ref", "t", "data_kwargs"),
        [
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=1.0),
1183
                v2_transforms.RandomHorizontalFlip(p=1.0),
1184
1185
1186
1187
                dict(),
            ),
            (
                seg_transforms.RandomHorizontalFlip(flip_prob=0.0),
1188
                v2_transforms.RandomHorizontalFlip(p=0.0),
1189
1190
1191
1192
                dict(),
            ),
            (
                seg_transforms.RandomCrop(size=480),
1193
                v2_transforms.Compose(
1194
                    [
1195
                        PadIfSmaller(size=480, fill={datapoints.Mask: 255, "others": 0}),
1196
                        v2_transforms.RandomCrop(size=480),
1197
1198
1199
1200
1201
1202
                    ]
                ),
                dict(),
            ),
            (
                seg_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1203
                v2_transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
1204
1205
1206
1207
1208
1209
1210
                dict(supports_pil=False, image_dtype=torch.float),
            ),
        ],
    )
    def test_common(self, t_ref, t, data_kwargs):
        self.check(t, t_ref, data_kwargs)

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

@pytest.mark.parametrize(
    ("legacy_dispatcher", "name_only_params"),
    [
        (legacy_F.get_dimensions, {}),
        (legacy_F.get_image_size, {}),
        (legacy_F.get_image_num_channels, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.pil_to_tensor, {}),
        (legacy_F.convert_image_dtype, {}),
        (legacy_F.to_pil_image, {}),
        (legacy_F.normalize, {}),
1223
        (legacy_F.resize, {"interpolation"}),
1224
1225
1226
        (legacy_F.pad, {"padding", "fill"}),
        (legacy_F.crop, {}),
        (legacy_F.center_crop, {}),
1227
        (legacy_F.resized_crop, {"interpolation"}),
1228
        (legacy_F.hflip, {}),
1229
        (legacy_F.perspective, {"startpoints", "endpoints", "fill", "interpolation"}),
1230
1231
1232
1233
1234
1235
1236
1237
        (legacy_F.vflip, {}),
        (legacy_F.five_crop, {}),
        (legacy_F.ten_crop, {}),
        (legacy_F.adjust_brightness, {}),
        (legacy_F.adjust_contrast, {}),
        (legacy_F.adjust_saturation, {}),
        (legacy_F.adjust_hue, {}),
        (legacy_F.adjust_gamma, {}),
1238
1239
        (legacy_F.rotate, {"center", "fill", "interpolation"}),
        (legacy_F.affine, {"angle", "translate", "center", "fill", "interpolation"}),
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
        (legacy_F.to_grayscale, {}),
        (legacy_F.rgb_to_grayscale, {}),
        (legacy_F.to_tensor, {}),
        (legacy_F.erase, {}),
        (legacy_F.gaussian_blur, {}),
        (legacy_F.invert, {}),
        (legacy_F.posterize, {}),
        (legacy_F.solarize, {}),
        (legacy_F.adjust_sharpness, {}),
        (legacy_F.autocontrast, {}),
        (legacy_F.equalize, {}),
1251
        (legacy_F.elastic_transform, {"fill", "interpolation"}),
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
    ],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
    legacy_signature = inspect.signature(legacy_dispatcher)
    legacy_params = list(legacy_signature.parameters.values())[1:]

    try:
        prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
    except AttributeError:
        raise AssertionError(
            f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
        ) from None

    prototype_signature = inspect.signature(prototype_dispatcher)
    prototype_params = list(prototype_signature.parameters.values())[1:]

    # Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
    # need to check if parameters were added in the middle rather than at the end, since that will be caught by the
    # regular check below.
    prototype_params, new_prototype_params = (
        prototype_params[: len(legacy_params)],
        prototype_params[len(legacy_params) :],
    )
    for param in new_prototype_params:
        assert param.default is not param.empty

    # Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
    # annotations. In these cases we simply drop the annotation and default argument from the comparison
    for prototype_param, legacy_param in zip(prototype_params, legacy_params):
        if legacy_param.name in name_only_params:
            prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
            legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
        elif legacy_param.annotation is inspect.Parameter.empty:
            prototype_param._annotation = inspect.Parameter.empty

    assert prototype_params == legacy_params