folder.py 11.6 KB
Newer Older
soumith's avatar
soumith committed
1
2
import os
import os.path
Philip Meier's avatar
Philip Meier committed
3
from typing import Any, Callable, cast, Dict, List, Optional, Tuple
4
from typing import Union
soumith's avatar
soumith committed
5

6
7
8
9
from PIL import Image

from .vision import VisionDataset

10

11
def has_file_allowed_extension(filename: str, extensions: Union[str, Tuple[str, ...]]) -> bool:
12
    """Checks if a file is an allowed extension.
13
14
15

    Args:
        filename (string): path to a file
16
        extensions (tuple of strings): extensions to consider (lowercase)
17
18

    Returns:
19
        bool: True if the filename ends with one of given extensions
20
    """
21
    return filename.lower().endswith(extensions if isinstance(extensions, str) else tuple(extensions))
soumith's avatar
soumith committed
22

23

Philip Meier's avatar
Philip Meier committed
24
def is_image_file(filename: str) -> bool:
25
26
27
28
29
30
31
32
33
34
35
    """Checks if a file is an allowed image extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)


36
def find_classes(directory: str) -> Tuple[List[str], Dict[str, int]]:
37
    """Finds the class folders in a dataset.
38

39
    See :class:`DatasetFolder` for details.
40
41
42
43
44
45
46
47
48
    """
    classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
    if not classes:
        raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

    class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
    return classes, class_to_idx


Philip Meier's avatar
Philip Meier committed
49
50
def make_dataset(
    directory: str,
51
    class_to_idx: Optional[Dict[str, int]] = None,
52
    extensions: Optional[Union[str, Tuple[str, ...]]] = None,
Philip Meier's avatar
Philip Meier committed
53
54
    is_valid_file: Optional[Callable[[str], bool]] = None,
) -> List[Tuple[str, int]]:
55
56
    """Generates a list of samples of a form (path_to_sample, class).

57
    See :class:`DatasetFolder` for details.
58

59
60
    Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function
    by default.
61
    """
62
    directory = os.path.expanduser(directory)
63
64
65
66
67
68

    if class_to_idx is None:
        _, class_to_idx = find_classes(directory)
    elif not class_to_idx:
        raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

69
70
71
    both_none = extensions is None and is_valid_file is None
    both_something = extensions is not None and is_valid_file is not None
    if both_none or both_something:
Surgan Jandial's avatar
Surgan Jandial committed
72
        raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")
73

74
    if extensions is not None:
75

Philip Meier's avatar
Philip Meier committed
76
        def is_valid_file(x: str) -> bool:
77
            return has_file_allowed_extension(x, extensions)  # type: ignore[arg-type]
78

Philip Meier's avatar
Philip Meier committed
79
    is_valid_file = cast(Callable[[str], bool], is_valid_file)
80
81
82

    instances = []
    available_classes = set()
83
84
85
86
    for target_class in sorted(class_to_idx.keys()):
        class_index = class_to_idx[target_class]
        target_dir = os.path.join(directory, target_class)
        if not os.path.isdir(target_dir):
soumith's avatar
soumith committed
87
            continue
88
        for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
89
            for fname in sorted(fnames):
90
91
                path = os.path.join(root, fname)
                if is_valid_file(path):
92
93
                    item = path, class_index
                    instances.append(item)
94
95
96
97

                    if target_class not in available_classes:
                        available_classes.add(target_class)

98
    empty_classes = set(class_to_idx.keys()) - available_classes
99
100
101
    if empty_classes:
        msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "
        if extensions is not None:
102
            msg += f"Supported extensions are: {extensions if isinstance(extensions, str) else ', '.join(extensions)}"
103
104
        raise FileNotFoundError(msg)

105
    return instances
soumith's avatar
soumith committed
106

107

108
class DatasetFolder(VisionDataset):
109
    """A generic data loader.
110

111
112
    This default directory structure can be customized by overriding the
    :meth:`find_classes` method.
113
114
115
116

    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
117
        extensions (tuple[string]): A list of allowed extensions.
118
            both extensions and is_valid_file should not be passed.
119
120
121
122
123
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.
Carrie's avatar
Carrie committed
124
125
        is_valid_file (callable, optional): A function that takes path of a file
            and check if the file is a valid file (used to check of corrupt files)
126
            both extensions and is_valid_file should not be passed.
127
128

     Attributes:
129
        classes (list): List of the class names sorted alphabetically.
130
131
        class_to_idx (dict): Dict with items (class_name, class_index).
        samples (list): List of (sample path, class_index) tuples
132
        targets (list): The class_index value for each image in the dataset
133
134
    """

Philip Meier's avatar
Philip Meier committed
135
    def __init__(
136
137
138
139
140
141
142
        self,
        root: str,
        loader: Callable[[str], Any],
        extensions: Optional[Tuple[str, ...]] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        is_valid_file: Optional[Callable[[str], bool]] = None,
Philip Meier's avatar
Philip Meier committed
143
    ) -> None:
144
        super().__init__(root, transform=transform, target_transform=target_transform)
145
        classes, class_to_idx = self.find_classes(self.root)
146
        samples = self.make_dataset(self.root, class_to_idx, extensions, is_valid_file)
147
148
149
150
151
152
153

        self.loader = loader
        self.extensions = extensions

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
154
        self.targets = [s[1] for s in samples]
155

156
157
158
159
160
161
162
    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Dict[str, int],
        extensions: Optional[Tuple[str, ...]] = None,
        is_valid_file: Optional[Callable[[str], bool]] = None,
    ) -> List[Tuple[str, int]]:
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        """Generates a list of samples of a form (path_to_sample, class).

        This can be overridden to e.g. read files from a compressed zip file instead of from the disk.

        Args:
            directory (str): root dataset directory, corresponding to ``self.root``.
            class_to_idx (Dict[str, int]): Dictionary mapping class name to class index.
            extensions (optional): A list of allowed extensions.
                Either extensions or is_valid_file should be passed. Defaults to None.
            is_valid_file (optional): A function that takes path of a file
                and checks if the file is a valid file
                (used to check of corrupt files) both extensions and
                is_valid_file should not be passed. Defaults to None.

        Raises:
            ValueError: In case ``class_to_idx`` is empty.
            ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None.
            FileNotFoundError: In case no valid file was found for any class.

        Returns:
            List[Tuple[str, int]]: samples of a form (path_to_sample, class)
        """
185
186
187
188
        if class_to_idx is None:
            # prevent potential bug since make_dataset() would use the class_to_idx logic of the
            # find_classes() function, instead of using that of the find_classes() method, which
            # is potentially overridden and thus could have a different logic.
189
            raise ValueError("The class_to_idx parameter cannot be None.")
190
191
        return make_dataset(directory, class_to_idx, extensions=extensions, is_valid_file=is_valid_file)

192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:
        """Find the class folders in a dataset structured as follows::

            directory/
            ├── class_x
            │   ├── xxx.ext
            │   ├── xxy.ext
            │   └── ...
            │       └── xxz.ext
            └── class_y
                ├── 123.ext
                ├── nsdf3.ext
                └── ...
                └── asd932_.ext
206
207
208

        This method can be overridden to only consider
        a subset of classes, or to adapt to a different dataset directory structure.
209
210
211
212
213
214
215
216
217

        Args:
            directory(str): Root directory path, corresponding to ``self.root``

        Raises:
            FileNotFoundError: If ``dir`` has no class folders.

        Returns:
            (Tuple[List[str], Dict[str, int]]): List of all classes and dictionary mapping each class to an index.
218
        """
219
        return find_classes(directory)
220

Philip Meier's avatar
Philip Meier committed
221
    def __getitem__(self, index: int) -> Tuple[Any, Any]:
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return sample, target

Philip Meier's avatar
Philip Meier committed
238
    def __len__(self) -> int:
239
240
241
        return len(self.samples)


242
IMG_EXTENSIONS = (".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp")
243
244


Philip Meier's avatar
Philip Meier committed
245
def pil_loader(path: str) -> Image.Image:
246
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
247
    with open(path, "rb") as f:
248
        img = Image.open(f)
249
        return img.convert("RGB")
250
251


Philip Meier's avatar
Philip Meier committed
252
253
# TODO: specify the return type
def accimage_loader(path: str) -> Any:
254
    import accimage
255

256
257
    try:
        return accimage.Image(path)
258
    except OSError:
259
260
261
262
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


Philip Meier's avatar
Philip Meier committed
263
def default_loader(path: str) -> Any:
264
    from torchvision import get_image_backend
265
266

    if get_image_backend() == "accimage":
267
268
269
270
271
        return accimage_loader(path)
    else:
        return pil_loader(path)


272
class ImageFolder(DatasetFolder):
273
    """A generic data loader where the images are arranged in this way by default: ::
274
275
276

        root/dog/xxx.png
        root/dog/xxy.png
277
        root/dog/[...]/xxz.png
278
279
280

        root/cat/123.png
        root/cat/nsdf3.png
281
        root/cat/[...]/asd932_.png
282

283
284
285
    This class inherits from :class:`~torchvision.datasets.DatasetFolder` so
    the same methods can be overridden to customize the dataset.

286
287
288
289
290
291
292
    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
293
        is_valid_file (callable, optional): A function that takes path of an Image file
Carrie's avatar
Carrie committed
294
            and check if the file is a valid file (used to check of corrupt files)
295
296

     Attributes:
297
        classes (list): List of the class names sorted alphabetically.
298
299
300
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """
301

Philip Meier's avatar
Philip Meier committed
302
    def __init__(
303
304
305
306
307
308
        self,
        root: str,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        loader: Callable[[str], Any] = default_loader,
        is_valid_file: Optional[Callable[[str], bool]] = None,
Philip Meier's avatar
Philip Meier committed
309
    ):
310
        super().__init__(
311
312
313
314
315
316
317
            root,
            loader,
            IMG_EXTENSIONS if is_valid_file is None else None,
            transform=transform,
            target_transform=target_transform,
            is_valid_file=is_valid_file,
        )
318
        self.imgs = self.samples